--%>

What are the chemical properties of haloalkanes?

Haloalkanes are extremely reactive category of aliphatic compounds. Their reactivity is due to the presence of polar carbon-halogen bond in their molecules.


The chemical reactions of haloalkanes can be divided into four ways:
    
Nucleophilic substitution reactions

In haloalkanes, the halogen atoms are attached to the carbon atom. The bond between carbon and halogen is polar in character because the halogen atom is more electronegative than carbon.

Due to the presence of partial positive charge on the carbon atom, the nucleophilies can attack on electron deficient carbon thereby resulting the displacement of weaker nucleophile is generally stronger than it.

The order of reactivity of various alkyl halides towards nucleophilic substitution in the order:

Order of reactivity: RI > RBr > RCI > RF

This order of reactivity can be explained on the basis of strength of C-X bond. The C-X bond is the weakest in R-I and the strongest in R-F as is clear from the bond energy data for methyl halides. In fact, the C-F bond is so strong that organic fluorides do not undergo nucleophilic substitution under ordinary conditions.

Bond

C-I

C-Br

C-Cl

C-F

Bond Enthalpies (kJ/mole)

234

293

351

452

Bond length (pm)

214

193

178

139

Dipole moment (Debye)

1.636

1.830

1.860

1.847


Examples of nucleophilic substitution reactions of haloalkanes
    
Replacement of hydroxyl group (Formation of alcohols).

Haloalkanes on treatment with aqueous solution of KOH or moist silver oxide (Ag2O/H2O) give alcohols.
                        
2388_haloalkanes.png 
    
Replacement Alkoxy group (Formation of ethers). (Williamson Synthesis):

Haloalkanes on treatment with alcoholic sodium or potassium alkoxide form ethers. This reaction is called as Williamson Synthesis.
        
1935_haloalkanes1.png 

Ethers can also be prepared by heating alkyl halides with dry silver oxide, Ag2O
                
1005_haloalkanes3.png  
    
Replacement by Cyano Group (Formation of cyanides or nitrites)

Haloalkanes on treatment with alcoholic KCN solution give alkanenitriles or alkyl cyanides as the major product with a small amount of alkyl isocyanide.

2173_haloalkanes2.png 

The reaction of alkyl halides with KCN gives us an important method for increasing the length of carbon chain by one carbon atom i.e. rising of series.

   Related Questions in Chemistry

  • Q : Importance of organic chemistry

    Describe the importance of organic chemistry?

  • Q : Explain gels and its various categories.

    Certain sols have the property of setting to a semi-solid, jelly-like form by enclosing the entire amount of liquid within itself when they are present at high concentrations. This process is called gelation and colloidal systems with jelly-like appearance are known as gels. Some common examples

  • Q : Can protein act as the buffer Can

    Can protein act as the buffer? Briefly comment on that statement.

  • Q : Strength of Nacl in solution To 5.85gm

    To 5.85gm of Nacl one kg of water is added to prepare of solution. What is the strength of Nacl in this solution (mol. wt. of nacl = 58.5)? (a) 0.1 Normal (b) 0.1 Molal (c) 0.1 Molar (d) 0.1 FormalAnswer:

  • Q : Numerical The volume of water to be

    The volume of water to be added to 100cm3 of 0.5 N N H2SO4 to get decinormal concentration is : (a) 400 cm3 (b) 500cm3 (c) 450cm3 (d)100cm3

  • Q : Describe chemical properties of amines.

    Like ammonia, primary, secondary and tertiary amines have a single pair of electrons on N atom. Hence chemical behavior of amines is similar to ammonia. Amines are basic in nature, and in most of the reactions they act as nucleophiles.      1. Reaction wi

  • Q : Question based on vapour pressure and

    Benzene and toluene form nearly ideal solutions. At 20°C, the vapour pressure of benzene is 75 torr and that of toluene is 22 torr. The parial vapour pressure of benzene at 20°C for a solution containing 78g of benzene and 46g of toluene in torr is: (a) 50 (b)

  • Q : Question on molality Provide solution

    Provide solution of this question. Which of the following concentration factor is affected by change in temperature : (a)Molarity (b) Molality (c)Mole fraction (d)Weight fraction

  • Q : Molarity Give me answer of this

    Give me answer of this question. If 20ml of 0.4N, NaoH solution completely neutralises 40ml of a dibasic acid. The molarity of the acid solution is:(a) 0.1M (b) 0.2M (c)0.3M (d)0.4M

  • Q : Explain Second Order Rate Equations.

    Integration of the second order rate equations also produces convenient expressions for dealing with concentration time results.A reaction is classified as second order if the rate of the reaction is proportional to the square of the concentration of one o