--%>

What are halogen oxoacids?

Fluorine yields only one oxyacid, hypofluorous acid (HOF). Chlorine, bromine and iodine form four series of acids with formulae: HOX, HXO2, HXO3 and HXO4, although many of these are known only in solutions or as salts.
    
The Hypohalous acids HOCl, HOBr and HOI are weak acids and are only formed in aqueous solutions by disproportionation of the halogen of the halogen water

X2 + H21402_Phosphorus trichloride.png  HOX + HX (X = Cl, Br, I)

Salts of these acids are known as hypohalites, e.g. bleaching powder, CaOCl2 is a common example of this category.
    
The halic acids HClO3 and HBrO3 are also known as solutions, but iodic acid HIO3 exists as a white solid. Thus, the stability of acids increases with increase in atomic number of the halogen. These acids act as strong oxidizing agents, e.g. these oxidize halides to give halogens in acid medium.

OX3- + 5X- + 6H+  1402_Phosphorus trichloride.png  3X2 + 3H2O

The salts of these are called halates. Amongst the halates, sodium chlorate (NaClO3and potassium chlorate (KClO3are prepared on industrial scale. It is also known as 'Berthelot salt'. NaClO3 is a powerful weed killer, whilst KClO3 is used in fireworks and matches.
    
Perhalic acid i.e. perchloric, periodic acids as well as their salts perchlorates and periodates are known to exist. The perhalates (MXO4)are prepared by the electrolytic oxidation of the corresponding halates, MXO3.

4ClO3 1402_Phosphorus trichloride.png  Cl+ 3ClO4-

The disproportionation of BrO3- to BrO4- is unfavorable, therefore per bromates are obtained only by oxidation of BrO3- by F2 in basic solution.

BrO3- + F2 + 2OH-  1402_Phosphorus trichloride.png  BrO4+ 2F- + H2O

Acidic character of oxyacids: the variation in the acidic character of the halogen acids in different oxidation states are summarized below:
    
The acid strength of oxyacid of the same halogen increases with the increase in oxidation number of the halogen. For example, among the different oxyacids of chlorine the acidic character follows the order

HOCl < HClO2 < HClO3 < HClO4

Reason: the acid strength can be explained on the basis Lowry-Bronsted concept that conjucate base of weak and is strong and conjugate base of strong acid is weaker.

   Related Questions in Chemistry

  • Q : Problem on preparing of a solution Give

    Give me answer of this question. How many grams of CH3OH should be added to water to prepare 150 solution of@M CH3 OH: (a) 9.6 (b) 2.4 (c) 9.6x 103 (d) 2.4 x103

  • Q : Mole fraction and Molality Select the

    Select the right answer of the following question.What does not change on changing temperature : (a) Mole fraction (b) Normality (c) Molality (d) None of these

  • Q : Hydroxide is highly insoluble in

     : 1) Chromium(III) hydroxide is highly insoluble in distilled water but dissolves readily in either acidic or basic solution. Briefly explain why the compound can dissolve in acidic or in basic but not in neutral solution. Write appropriate equations to

  • Q : Benefits of soapy detergents over the

    What are the benefits of soapy detergents over the soap less detergents? Briefly state the benefits?

  • Q : Explain Rotational Vibrational Spectra

    The infrared spectrum of gas samples shows the effect of rotational-energy changes along with the vibrational energy change.As we know from the interpretations given to thermodynamic properties of gases, gas molecules are simultaneously rotating and vibrating. It follows that an absor

  • Q : Explain various chemicals associated

    During processing of food, several chemicals are added to it to augment its shelf life and to make it more attractive as well. Main types of food addi

  • Q : Procedure to judge that organic

    Describe briefly the procedure to judge that the given organic compound is pure or not?

  • Q : Application of colligative properties

    Choose the right answer from following. Colligative properties are used for the determination of: (a) Molar Mass (b) Equivalent weight (c) Arrangement of molecules (d) Melting point and boiling point (d) Both (a) and (b)  

  • Q : Schrodinger equation with particle in a

    Three dimensional applications of the Schrodinger equation are introduced by the particle-in-a-box problem.So far only a one-dimensional problem has been solved by application of the Schrodinger equation. Now the allowed energies and the probability functi

  • Q : What is Henry law constant and its

    1. The units of Henry Law constant are same as those of pressure, i.e. torr or h bar. 2. Different gases have dissimilar values of Henry law constant. The values of KH for some gases in water are given in tabl