--%>

What are haloalkanes and haloarenes and its properties?

Alkyl halides or haloalkanes are the compounds in which a halogen is bonded to an alkyl group. They have the general formula RX (where R is alkyl group, CnH2n+1 and X is halogen atom). These may be obtained from an alkane by replacement of one hydrogen atom by a halogen atom.

693_haloalkanes.png 

849_haloalkanes1.png 

Alkyl halides are classified as primary, secondary and tertiary alkyl halides depending on whether the halogen atom is attached to a primary, secondary or tertiary carbon atom respectively. For example,

2145_haloalkanes2.png 
     
Halogen derivatives of unsaturated hydrocarbons: replacement of some hydrogen atom in alkenes or alkynes by some halogen atom yields this type of halogen compounds. Some ordinary examples are listed below:

1273_haloalkanes3.png 

    
Aromatic halogen compound or haloarenes are the halogen compounds which contain at least one aromatic ring. Halogen derivatives of aromatic compounds can of two kinds:
    
Aryl halides: in these compounds, the halogen atom is directly combined to the carbon of benzene nucleus. They are also called nuclear substitution derivatives.
    
Aralkyl halides: in this type of compounds, halogen atom is linked to the carbon atom of the side chain. They are also called side chain substitution derivatives. 

The side chain derivatives are very similar to aliphatic halogen derivatives i.e. haloalkanes.
    
The halides in which halogen atom is attached to an sp3-hybridised carbon atom next to a carbon-carbon double bond are known as allylic halides.
    
The halides in which halogen atom is attached to one of the carbon atoms of a carbon-carbon double bond (C=C) are known as vinylic halides.
    
The halides in which halogen atom is attached to a carbon atom next to aromatic ring are known as benzylic halides.
    
In alkyl halides, allyl halides and benzyl halides halogen atom is bonded to an sp3 hybridized carbon atom.

Alkyl, allylic and benzylic halides may be further be classified as primary, secondary and tertiary halides.

In aryl halides and vinyl halides halogens atom is bonded to an sp2 hybridized carbon atom.

   Related Questions in Chemistry

  • Q : Chem Silicon has three naturally

    Silicon has three naturally occurring isotopes. 28Si, mass = 27.976927; 29Si, mass = 28.976495; 30Si, mass = 29.973770 and 3.10% abundance. What is the abundance of 28Si?

  • Q : Concentration of Calcium carbonate Help

    Help me to go through this problem. 1000 gms aqueous solution of CaCO3 contains 10 gms of carbonate. Concentration of the solution is : (a)10 ppm (b)100 ppm (c)1000 ppm (d)10000 ppm

  • Q : Difference in Mendeleevs table and

    Briefly describe the difference in the Mendeleev’s table and modern periodic table?

  • Q : Question on Mole fraction Mole fraction

    Mole fraction of any solution is equavalent to: (a) No. of moles of solute/ volume of solution in litter (b) no. of gram equivalent of solute/volume of solution in litters (c) no. of  moles of solute/ Mass of solvent in kg (d) no. of moles of any

  • Q : Vapour pressure of benzene Give me

    Give me answer of this question. The vapour pressure of benzene at a certain temperature is 640mm of Hg. A non-volatile and non-electrolyte solid weighing 2.175g is added to 39.08g of benzene. The vapour pressure of the solution is 600,mm of Hg . What is the mo

  • Q : Excel assignment I want it before 8 am

    I want it before 8 am tomorow please. I am just wondering how much is going to be ?

  • Q : Particles of quartz Particles of quartz

    Particles of quartz are packed by:(i) Electrical attraction forces  (ii) Vander Waal's forces  (iii) Covalent bond forces  (iv) Strong electrostatic force of attraction Answer: (iii)

  • Q : Haloalkene with the help of polarity of

    with the help of polarity of c-x bond show that aryl halides are less reactive than alkyl halides

  • Q : Question based on lowering of vapour

    Choose the right answer from following. The relative lowering of vapour pressure produced by dissolving 71.5 g of a substance in 1000 g of water is 0.00713. The molecular weight of the substance will be:  (a) 18.0 (b) 342 (c) 60 (d) 180