--%>

What are emulsions?Describe its preparation and tests.

Emulsions are colloidal solutions in which disperse phase as well as dispersion medium is both liquids. Emulsions can be broadly classified into two types:


(i) Oil in water (O/W type) emulsions: in this type of emulsions, oil acts disperse phase and water acts as dispersion medium. Some examples of this type of emulsions are milk, vanishing cream, etc.

(ii) Water in oil (W/O type) emulsions: in this type of emulsions, water acts as disperse phase and oil acts as dispersion medium. Some examples are cold cream, butter, cod liver oil etc.

The two types of emulsions can be interconverted simply by changing the proportion of the dispersed phase and dispersion medium. For example, O/W type of emulsion can be converted W/O type by adding excess of oil to O/W emulsion.

Detection of emulsions

The below mentioned tests may be applied to distinguish between the two types of emulsions:

(i) Dye test: to the emulsion some oil soluble dye is added. If the background becomes coloured, the emulsion is water in oil type and if the droplets become coloured, the emulsion is oil in water type.

(ii) Dilution test: if the emulsion can be diluted with water, this indicates that water act as the dispersion medium and the emulsion is of oil in water type. If the added water forms a separate layer, then in that case the emulsion is water-in-oil type.

Preparation of emulsions

The process of making an emulsion known as emulsification. Emulsions may be obtained by vigorously agitating a mixture of both the liquids. But this gives an unstable emulsion the dispersed drops at once come together and form a separate layer. To stabilize an emulsion, the addition of a small quantity of the third substance known as emulsify agent or emulsifier is essential. The emulsified agents form an interfacial film between suspended particles and the dispersion medium. For example, soaps and detergents are frequently used as emulsifiers. They coat the drops of an emulsion and check them from coming together thereby establishing the emulsion. The principle emulsifying agent for W/O type emulsions are heavy metal salts of fatty acids, long chain alcohols, lamp black, etc. the emulsifying agents used for O/W type emulsions are proteins, gums, natural and synthetic soaps, etc.

   Related Questions in Chemistry

  • Q : Gibberella fusarium in bioremediation

    in bioremediation gibberella fusarium is used to break down____?

  • Q : Relative reactivity Which is more

    Which is more reactive towards nucleophilic substitution aryl halide or vinyl halides

  • Q : Question on seminormal solution Provide

    Provide solution of this question. The weight of sodium carbonate required to prepare 500 ml of a seminormal solution is: (a) 13.25 g (b) 26.5 g (c) 53 g (d) 6.125 g

  • Q : Define Virial Equation The constant of

    The constant of vander Waal's equation can be related to the coefficients of the virial equation.  Vander Waal's equation provides a good overall description of the real gas PVT behaviour. Now let us

  • Q : Problem on decinormal Select the right

    Select the right answer of the question. How much water is required to dilute 10 ml of 10 N hydrochloric acid to make it exactly decinormal (0.1 N): (a) 990 ml (b) 1000 ml (c) 1010 ml (d) 100 ml

  • Q : Explain the molecular mass with respect

    During the formation of polymers, different macromolecules have different degree of polymerisation i.e. they have varied chain lengths. Thus, the molecular masses of the individual macromolecules in a particular sample of the polymer are different. Hence, an average value of the molecular mass is

  • Q : Tetrahedral holes In zinc blende

    In zinc blende structure, zinc atom fill up:(a) All octahedral holes  (b) All tetrahedral holes  (c) Half number of octahedral holes  (d) Half number of tetrahedral holesAnswer: (d) In zinc blende (ZnS

  • Q : Problem on preparing of a solution Give

    Give me answer of this question. How many grams of CH3OH should be added to water to prepare 150 solution of@M CH3 OH: (a) 9.6 (b) 2.4 (c) 9.6x 103 (d) 2.4 x103

  • Q : Question on Mole fraction Mole fraction

    Mole fraction of any solution is equavalent to: (a) No. of moles of solute/ volume of solution in litter (b) no. of gram equivalent of solute/volume of solution in litters (c) no. of  moles of solute/ Mass of solvent in kg (d) no. of moles of any

  • Q : Units of Measurement Unit of

      Unit of measurement- These are also some systems for units:      (1)