--%>

What are electromotive force in electrochemical cells?

The main objective of this particular aspect of Physical Chemistry is to examine the relation between free energies and the mechanical energy of electromotive force of electrochemical cells. The ionic components of aqueous solutions can be treated on the basis of the general methods which have been developed in electrochemical cells. But no means were developed there for the deduction of solute free energies from the direct relation between free energies and the mechanical energy can be obtained by harnessing a reaction involving these species.

Now arrangements are considered whereby the mechanical energy that can be obtained from a reversible chemical change can be determined. The procedure leads to a direct, and frequently very accurate, measurement of the free-energy change for the reaction. The arrangement consists of allowing, or forcing the reaction to proceed at a state of balance in an electrochemical cell. The electrical energy, which can be converted essentially completely too mechanical energy, is determined.

The reactions that take place in electrochemical cells normally involve the ionic species of parent electrolytes. Some of these are accountable for the passage of the electric current through the usual aqueous solution in the cell. Information on obtained from the results of electrical measurements.

   Related Questions in Chemistry

  • Q : Question on Mole fraction Mole fraction

    Mole fraction of any solution is equavalent to: (a) No. of moles of solute/ volume of solution in litter (b) no. of gram equivalent of solute/volume of solution in litters (c) no. of  moles of solute/ Mass of solvent in kg (d) no. of moles of any

  • Q : Explain reactions of carbonyl oxygen

    In these reaction oxygen atom of carbonyl group is replaced by either one divalent group or two monovalent groups. Reaction by ammonia derivatives: aldehydes and ketones react with a number of ammonia derivatives such as hydroxylaminem hydrazine, semicarbazide etc. in weak acidic medium.

  • Q : Coordination compounds discuss

    discuss practical uses of coordination compounds

  • Q : Problem on Molar solution Can someone

    Can someone please help me in getting through this problem. 2.0 molar solution is acquired, when 0.5 mole solute is dissolved in: (i) 250 ml solvent (ii) 250 g solvent (iii) 250 ml solution (iv) 1000 ml solvent

  • Q : Adiabatic compression A lean natural

    A lean natural gas is available at 18oC and 65 bars and must be compressed for economical pipeline transportation. The gas is first adiabatically compressed to 200 bars and then isobarically (i.e. at constant pressure) cooled to 25°C. The gas, which is

  • Q : Explain vapour pressure of liquid

    Liquid solutions are obtained when the solvent is liquid. The solute can be a gas, liquid or a solid. In this section we will discuss the liquid solutions containing solid or liquid solutes. In such solutions the solute may or may not be volatile. We shall limit our d

  • Q : Normality of solution containing

    Can someone please help me in getting through this problem. Determine the normality of a solution having 4.9 gm H3PO4 dissolved in 500 ml water: (a) 0.3  (b) 1.0  (c) 3.0   (d) 0.1

  • Q : Explain Polyatomic Vibrational Spectra

    Polyatomic molecules vibrate in a number of ways, and some of these vibrations can be studied by infrared absorption spectroscopy and some by Raman spectroscopy. The characters of transformation matrices for all 3n translation rotation vibration motio

  • Q : Normality how 0.5N HCL is prepared for

    how 0.5N HCL is prepared for 10 littre solution

  • Q : How molecule-molecule collisions takes

    An extension of the kinetic molecular theory of gases recognizes that molecules have an appreciable size and deals with molecule-molecule collisions. We begin studies of elementary reactions by investigating the collisions b