--%>

What are biodegradable polymers? Present some examples.

 

These are polymers that can be broken into small segments by enzyme-catalysed reactions. The required enzymes are produced by microorganism. It is a known fact that the carbon-carbon bonds of chain growth polymers are inert to enzyme-catalysed reactions, and hence they are non biodegradable. To make such polymers biodegradable we have to insert certain bonds in the chains so that these can be easily broken by the enzymes. Now when such polymers are buried as waste, microorganisms present in the ground can degrade the polymer.

One of the most excellent methods of making a polymer biodegradable is by introducing hydrolysable ester group into the polymer.

For example if acetal is added to an alkene undergoing radical polymerisation, ester group will be inserted into the polymer.

The weak links in the polymer are susceptible to enzyme catalysed hydrolysis.

Aliphatic polyesters are one of the significant categories of biodegradable polymers. Some other examples of biodegradable polymers are described below:

(i) PHBV (Poly-hydroxybutrate-co- 856_Biodegradable1.png-hydroxy valerate):  it is a copolymer of 3-hydroxy butyric acid and 3-hydroxypentanoic acid.
378_Biodegradable.png 


PHBV is used in orthopaedic devices and controlled drug release. The drug put in PHBV capsule is released after this polymer is degraded by enzymatic action. It can also be degraded by bacterial action.

(ii) Poly glycolic acid and poly lactic acid: these are also biodegradable polymers and are used for post operative stitches. These are bioabsorbable structures.

(iii) Nylon-2-Nylon: it is an alternating polyamide copolymer of glycine2233_Biodegradable3.png  and amino caproic acid1005_Biodegradable4.png and is biodegradable.

907_Biodegradable2.png

 

 

 

 

 

   Related Questions in Chemistry

  • Q : Problem on Clausius equation of state

    If a gas can be described by the Clausius equation of state: P (V-b) = RT Where b is a constant, then:  (a) Obtain an expression for the residual vo

  • Q : Ionization Potential Second ionization

    Second ionization potential of Li, Be and B is in the order (a)Li>Be>B (b)Li>B>Be (c)Be>Li>B (d)B>Be>Li

  • Q : Carnot cycle show how a mathematical

    show how a mathematical definition of entropy can be obtauined from a consideration of carnot cycle?

  • Q : Colligative property problem Which is

    Which is not a colligative property: (a) Refractive index (b) Lowering of vapour pressure (c) Depression of freezing point (d) Elevation of boiling point    

  • Q : Problem on mole fraction of glucose

    Provide solution of this question. While 1.80gm glucose dissolve in 90 of H2O , the mole fraction of glucose is: (a) 0.00399 (b) 0.00199 (c) 0.0199 (d) 0.998

  • Q : Strength of the Hydrochloric acid

    Provide solution of this question. 1.0 gm of pure calcium carbonate was found to need 50 ml of dilute HCL for complete reaction. The strength of the HCL solution is specified by : (a) 4 N (b) 2 N (c) 0.4 N (d) 0.2 N

  • Q : Problem on vapour pressure Choose the

    Choose the right answer from following. If P and P are the vapour pressure of a solvent and its solution respectively N1 and N2 and are the mole fractions of the solvent and solute respectively, then correct relation is: (a) P= PoN1 (b) P= Po N2 (c)P0= N2 (d)

  • Q : Solubility are halides are halogens

    are halides are halogens more soluble? why?

  • Q : Explain gels and its various categories.

    Certain sols have the property of setting to a semi-solid, jelly-like form by enclosing the entire amount of liquid within itself when they are present at high concentrations. This process is called gelation and colloidal systems with jelly-like appearance are known as gels. Some common examples

  • Q : Mole 2.0gram of dolomite is heated to a

    2.0gram of dolomite is heated to a constant weight of 1.0g. Calculate the total volume of CO2 produced at STP by this reation