Velocity of the particle
Determine the Velocity of the particle in terms of component veocities?
Expert
Velocity is rate of change of DISPLACEMENT, and the particle is moving or DISPLACING in x and y directions, and through the image or snapshots the positions are recoded.
The displacement in x or y direction will be change in subsequent position values, such as x2 – x1 or y2 – y1, or Xi+1 – Xi. and is denoted by dX or ΔX.
Similarly the change is time, when the change in position occurs, is t2 – t1 or dtor Δt.
Now velocity is rate of change of displacement, i.e. dx/dt = ΔX/Δt = (Xi+1 – Xi)/(ti+1 – ti)
Delta t or ?t is the time duration between successive positions, which are recorded on successive images, now since there are 3000 frames per second. Hence 1/3000 seconds per frame.
This means that time duration or delta t between successive images and hence positions is 1/3000 sec.
Now velocity is (Xi+1 – Xi)/(ti+1 – ti) = (Xi+1 – Xi)/(1/3000)
But this is velocity in X direction only and since the particle is displaced in y direction as well you need to find velocity in Y direction also.
(Yi+1 – Yi)/(ti+1 – ti) = (Yi+1 – Yi)/(1/3000)
The velocity of the particle will be vector addition of these component velocities. In other words, you can calculate the velocity as, (VXi2 + VYi2)1/2.
Eotvos law of capillarity (Baron L. von Eotvos; c. 1870): The surface tension gamma of a liquid is associated to its temperature T, the liquid's critical temperature, T*, and its density rho by: gamma ~=
Geometrized units: The system of units whereby certain basic constants (G, c, k, and h) are set to unison. This makes computations in certain theories, like general relativity, much simpler to deal with, as such constants appear often. Q : What is Kirchhoffs law of radiation Kirchhoff's law of radiation (G.R. Kirchhoff): The emissivity of a body is equivalent to its absorbptance at similar temperature.
Kirchhoff's law of radiation (G.R. Kirchhoff): The emissivity of a body is equivalent to its absorbptance at similar temperature.
Wiedemann-Franz law: It is the ratio of the thermal conductivity of any pure metal (substance) to its electrical conductivity is just about constant for any specified temperature. This law holds pretty well apart from at low temperatures.
I have a problem in wirting a report on Radiobiology for Travel Space. Can someone provide me a complete report on the above topic.
Briefly explain the procedure to compute the tensile strength?
Thomson experiment: Kelvin effect (Sir W. Thomson [later Lord Kelvin]): Whenever an electric current flows via a conductor whose ends are maintained at various temperatures, heat is discharged at a rate just about proportional to the
Ideal gas equation: The equation that sums up the ideal gas laws in one simple equation, P V = n R T, Here V is the volume, P is the pressure, n is the
Briefly define or explain the cause of Brownian motion?
Occam's [or Ockham's] razor (William of Occam [or Ockham]; c. 1340): It is the suggestion that the simpler a theory is the better. When two theories forecast the phenomena to the similar accuracy, then the one that is simpler is the better one. Furthe
18,76,764
1934042 Asked
3,689
Active Tutors
1418621
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!