Velocity of the particle
Determine the Velocity of the particle in terms of component veocities?
Expert
Velocity is rate of change of DISPLACEMENT, and the particle is moving or DISPLACING in x and y directions, and through the image or snapshots the positions are recoded.
The displacement in x or y direction will be change in subsequent position values, such as x2 – x1 or y2 – y1, or Xi+1 – Xi. and is denoted by dX or ΔX.
Similarly the change is time, when the change in position occurs, is t2 – t1 or dtor Δt.
Now velocity is rate of change of displacement, i.e. dx/dt = ΔX/Δt = (Xi+1 – Xi)/(ti+1 – ti)
Delta t or ?t is the time duration between successive positions, which are recorded on successive images, now since there are 3000 frames per second. Hence 1/3000 seconds per frame.
This means that time duration or delta t between successive images and hence positions is 1/3000 sec.
Now velocity is (Xi+1 – Xi)/(ti+1 – ti) = (Xi+1 – Xi)/(1/3000)
But this is velocity in X direction only and since the particle is displaced in y direction as well you need to find velocity in Y direction also.
(Yi+1 – Yi)/(ti+1 – ti) = (Yi+1 – Yi)/(1/3000)
The velocity of the particle will be vector addition of these component velocities. In other words, you can calculate the velocity as, (VXi2 + VYi2)1/2.
Relativity principle: The principle, utilized by Einstein's relativity theories, that the laws of physics are similar, at least qualitatively, in all frames. That is, there is no frame which is better (or qualitatively any different) from any other. T
Davisson-Germer experiment (C.J. Davisson, L.H. Germer; 1927): The experiment which conclusively proved the wave nature of electrons; diffraction patterns were examined by an electron beam penetrating into the nickel target.
Hubble constant: H0 (E.P. Hubble; 1925): The constant that determines the relationship among the distance to a galaxy and its velocity of recession due to the growth of the Universe. As the Universe is self-gravitating, it is not trut
Wiedemann-Franz law: It is the ratio of the thermal conductivity of any pure metal (substance) to its electrical conductivity is just about constant for any specified temperature. This law holds pretty well apart from at low temperatures.
Kirchhoff's law of radiation (G.R. Kirchhoff): The emissivity of a body is equivalent to its absorbptance at similar temperature.
We require using synchronous TDM and joining 20 digital sources, each of 100 Kbps. Each and every output slot carries 1 bit for each digital source, however one extra bit is added up to each frame for synchronization. Q : Define Gauss law Gauss' law (K.F. Gauss' law (K.F. Gauss): The electric flux via a closed surface is proportional to the arithmetical sum of electric charges contained in that closed surface; in its differential form, div E = rho,
Gauss' law (K.F. Gauss): The electric flux via a closed surface is proportional to the arithmetical sum of electric charges contained in that closed surface; in its differential form, div E = rho,
What do you mean by the term density? Briefly explain it.
Mediocrity principle: The principle that there is nothing predominantly interesting about our position in space or time, or regarding ourselves. This principle most likely first made its real manifestation in the scientific community whenever Shapley
Tardon: A particle that has a positive real mass and travels at a speed very less than c in all inertial frames.
18,76,764
1954100 Asked
3,689
Active Tutors
1416156
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!