--%>

Velocity of the particle

Determine the Velocity of the particle in terms of component veocities?

E

Expert

Verified

Velocity is rate of change of DISPLACEMENT, and the particle is moving or DISPLACING in x and y directions, and through the image or snapshots the positions are recoded.

The displacement in x or y direction will be change in subsequent position values, such as x2 – x1 or y2 – y1, or Xi+1 – Xi. and is denoted by dX or ΔX.

Similarly the change is time, when the change in position occurs, is t2 – t1 or dtor  Δt.

Now velocity is rate of change of displacement, i.e. dx/dt = ΔX/Δt = (Xi+1 – Xi)/(ti+1 – ti)

Delta t or ?t is the time duration between successive positions, which are recorded on successive images, now since there are 3000 frames per second. Hence 1/3000 seconds per frame.

This means that time duration or delta t between successive images and hence positions is 1/3000 sec.

Now velocity is (Xi+1 – Xi)/(ti+1 – ti) = (Xi+1 – Xi)/(1/3000)

But this is velocity in X direction only and since the particle is displaced in y direction as well you need to find velocity in Y direction also.

(Yi+1 – Yi)/(ti+1 – ti) = (Yi+1 – Yi)/(1/3000)

The velocity of the particle will be vector addition of these component velocities. In other words, you can calculate the velocity as, (VXi2 + VYi2)1/2.

   Related Questions in Physics

  • Q : Explain Einstein field equation

    Einstein field equation: The cornerstone of Einstein's general theory of relativity, associating the gravitational tensor G to the stress-energy tensor T by the simple equation: G = 8 pi T<

  • Q : What is Paschen series Paschen series:

    Paschen series: The series that explains the emission spectrum of hydrogen whenever the electron is jumping to the third orbital. Each and every line is in the infrared part of the spectrum.

  • Q : Describe Wien displacement law Wien

    Wien displacement law: For a blackbody, the product result of the wavelength corresponding to the maximum radiances and the thermodynamic temperature is constant, then the Wien displacement law constant. As an outcome, as the temperature increases, th

  • Q : Explain Lagrange points Lagrange points

    Lagrange points: The points in the vicinity of two massive bodies (like the Earth and Moon) with each others' relevant gravities balance. There are five, labeled L1 via L5. L1, L2, and L3 lie all along the centerline among the centers

  • Q : Explain Curie-Weiss law Curie-Weiss law

    Curie-Weiss law (P. Curie, P.-E. Weiss): A more broad form of Curie's law that states that the susceptibility, khi, of a paramagnetic substance is associated to its thermodynamic temperature T by the equation:

    Q : What is neutral buoyancy What do you

    What do you mean by the term neutral buoyancy? Briefly illustrate it.

  • Q : Explain Poisson equation and Poisson

    Explain Poisson equation and Poisson spot: Poisson equation (S.D. Poisson): The differential form of Gauss' law, that is, div E = rho, Pois

  • Q : Why electron and proton encompass

    Explain in short why electron and proton encompass similar charge while the proton is 1836 times heavier?

  • Q : What MeV in MeV photon signify What

    What does MeV in MeV photon signify? Briefly describe it.

  • Q : Engineering in brief Define the term

    Define the term engineering in brief.