Velocity of the particle
Determine the Velocity of the particle in terms of component veocities?
Expert
Velocity is rate of change of DISPLACEMENT, and the particle is moving or DISPLACING in x and y directions, and through the image or snapshots the positions are recoded.
The displacement in x or y direction will be change in subsequent position values, such as x2 – x1 or y2 – y1, or Xi+1 – Xi. and is denoted by dX or ΔX.
Similarly the change is time, when the change in position occurs, is t2 – t1 or dtor Δt.
Now velocity is rate of change of displacement, i.e. dx/dt = ΔX/Δt = (Xi+1 – Xi)/(ti+1 – ti)
Delta t or ?t is the time duration between successive positions, which are recorded on successive images, now since there are 3000 frames per second. Hence 1/3000 seconds per frame.
This means that time duration or delta t between successive images and hence positions is 1/3000 sec.
Now velocity is (Xi+1 – Xi)/(ti+1 – ti) = (Xi+1 – Xi)/(1/3000)
But this is velocity in X direction only and since the particle is displaced in y direction as well you need to find velocity in Y direction also.
(Yi+1 – Yi)/(ti+1 – ti) = (Yi+1 – Yi)/(1/3000)
The velocity of the particle will be vector addition of these component velocities. In other words, you can calculate the velocity as, (VXi2 + VYi2)1/2.
Refraction law: For a wave-front travelling via a boundary among two media, the first with a refractive index of n1, and the other with one of n2, the angle of incidence theta is associated to the angle of refraction phi by:
State the law of Lamberts Cosine? Describe briefly?
Event horizon: The radius which a spherical mass should be compressed to in order to convert it into a black hole, or the radius at which the time and space switch responsibilities. Once within the event horizon, it is basically impossible to escape t
Le Chatelier's principle (H. Le Chatelier; 1888): When a system is in equilibrium, then any modification imposed on the system tends to shift the equilibrium state to decrease the consequence of that applied change.
basic SI unit of electric current is termed as Ampere: A (after A.M. Ampere, 1775-1836) The basic SI unit of electric current, stated as the current that, when going via two infinitely-long parallel conductors of v
Permeability of free space: magnetic constant: mu_0: The ratio of the magnetic flux density in the substance to the external field strength for vacuum. It is equivalent to 4 pi x 10-7 H/m.
Noether theorem (Noether): A theorem that explains that symmetries are what gives rise to conserved quantities. For example, the translational symmetry (that is the fact that the laws of physics work the same in all positions) gives r
Bode's law: Titius-Bode law - The mathematical formula that generates, with a fair quantity of accuracy, the semi major axes of the planets in out of order from the Sun. Write down the progression 0, 3, 6, 12, 24,
Josephson effects (B.D. Josephson; 1962): Electrical effects examined whenever two superconducting materials are separated by a thin layer of the insulating substance.
Siemens: S (after E.W. von Siemens, 1816-1892): The derived SI unit of an electrical conductance equivalent to the conductance of an element which has a resistance of 1 O [ohm]; this has units of O-1.
18,76,764
1942735 Asked
3,689
Active Tutors
1443683
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!