--%>

Theory of three dimensional motion

Partition function; that the translational energy of 1 mol of molecules is 3/2 RT will come as no surprise. But the calculation of this result further illustrates the use of quantized states and the partition function to obtain macroscopic properties. The partition function is:

 
qtrans = Σ exp [- (n2x + n2y + n2z) h2/ (8ma2)/kT]  

= Σ exp [- n2x h2/ (8ma2)/kT] Σ exp [- n2y h2/ (8ma2)/kT] × Σexp [- n2z h2/ (8ma2)/kT]

= Σ exp [-n2x h2/(8ma2)/kT] Σ exp [-n2y h2/(8ma2)/kT] × Σexp [-n2z h2/(8ma2)/kT]

= qx qy qz

Each of the three partition function terms is like the one-dimensional term. We therefore can use:

qx = qy = qz = √∏/2 [kT/h2/(8ma2)] ½ 

to obtain, with V = a3,

qtrans = qx qy qz = (2∏mkT/h2)3/2 V

The Three dimensional translation energy: the three dimensional translation energy is derivative with respect to temperature can be used to reach an expression for the normal energy of three dimensional translational motions. Although qtrans depends on the particles and the volume of the container, the thermal energy (U - U0)trans has, for 1 mol of any gas in any volume the value 3/2 RT.

Distribution over quantum states: the distribution expressions for three dimensional motions can be derived by following the same procedure as we do for one dimensional motion before. First, however, we see that we can use one "effective" quantum number n in place of the three dimensional quantum numbers are nx, ny, and nz.

It is enough for us to deal with a quantity that shows the sum of the square of the equation of quantum numbers rather than with the individual values. We introduce the variable n defined by n2 = n2x + n2y + n2z.

Then the allowed energies are given instead of the more detailed manner than the previous one which we have done above. In using the effective quantum number n, we must recognize that there are number of states all with the same value of the energy. The display of states as point shows that, for large n, the additional number of states included when n increases by 1 is equal to 1/2πn2. Thus, if we use n as an effective quantum number, we must use gn = 1/2πn2.

Distribution over Quantum states: the distribution expressions for dimensional motion can be derived by following the same procedure as we did for one dimensional motion. First, however, we see that we can use one 'effective" quantum number n in place of the three quantum numbers nx, ny and nz.

(n2x + n2y + n2z) (h2/8ma2)

It is enough for us to deal with a quantity that shows the sum of the squares of the quantum numbers rather than with the individual values. We introduces the variable n defined by n2 = n2x + n2y + n2z. then the allowed energies are given by n2h2/(8ma2) instead of the more detailed, but no more useful, expression involving nx, ny and nz.

In using the effective quantum number n, we must recognize that there are a number of states all with the same value of n, or of energy εn. The number of states at this energy is the degeneracy gn. The display of states as points shows that, for large n, the additional number of states included when n increases by 1 is equal to ½ ∏n2. Thus if we use n as an effective quantum number we must use gn, ½ ∏n2 as the degeneracy.

   Related Questions in Chemistry

  • Q : Rotational energy and entropy due to

    The entropy due to the rotational motion of the molecules of a gas can be calculated. Linear molecules: as was pointed out, any rotating molecule has a set of allowed rotational energies. For a linear molecule the

  • Q : Relationship between Pressure and

    The pressure-temperature relation for solid-vapor or liquid vapor equilibrium is expressed by the Clausis-Clapeyron equation.We now obtain an expression for the pressure-temperature dependence of the state of equilibrium between two phases. To be specific,

  • Q : Modes of concentration Which of the

    Which of the given modes of expressing concentration is fully independent of temperature: (1) Molarity (2) Molality (3) Formality (4) Normality Choose the right answer from above.

  • Q : What are condensation polymers? Give

    These types of polymers are formed as a result of condensation reaction between monomer units. Some common examples are being discussed here: 1. Polyesters 2047_condensat</span></p>
                                        </div>
                                        <!-- /comment-box -->
                                    </li>
   
   </td>
	</tr><tr>
		<td>
       
      <li>
                                        <div class=

    Q : P block bif3 is ionic while other

    bif3 is ionic while other trihalides are covalent in nature

  • Q : Mole fraction and Molality Select the

    Select the right answer of the following question.What does not change on changing temperature : (a) Mole fraction (b) Normality (c) Molality (d) None of these

  • Q : Reactivity of allyl and benzyl halides

    why allyl halide and haloarenes are more reactive than alkyl halide towards nucleophilic substitution

  • Q : Problem on relative humidity Relative

    Relative humidity is the ratio of the partial pressure of water in air to the partial pressure of water in air saturated with water at the same temperature, stated as a percentage: Relative  =

    Q : Problem on reversible process a. For a

    a. For a reversible process involving ideal gases in a closed system, Illustrate thatΔS = Cv ln(T2/T1) for a constant volume process ΔS = Cp ln(T2/T1) for a constant pressu

  • Q : Solubility are halides are halogens

    are halides are halogens more soluble? why?