--%>

Theory of three dimensional motion

Partition function; that the translational energy of 1 mol of molecules is 3/2 RT will come as no surprise. But the calculation of this result further illustrates the use of quantized states and the partition function to obtain macroscopic properties. The partition function is:

 
qtrans = Σ exp [- (n2x + n2y + n2z) h2/ (8ma2)/kT]  

= Σ exp [- n2x h2/ (8ma2)/kT] Σ exp [- n2y h2/ (8ma2)/kT] × Σexp [- n2z h2/ (8ma2)/kT]

= Σ exp [-n2x h2/(8ma2)/kT] Σ exp [-n2y h2/(8ma2)/kT] × Σexp [-n2z h2/(8ma2)/kT]

= qx qy qz

Each of the three partition function terms is like the one-dimensional term. We therefore can use:

qx = qy = qz = √∏/2 [kT/h2/(8ma2)] ½ 

to obtain, with V = a3,

qtrans = qx qy qz = (2∏mkT/h2)3/2 V

The Three dimensional translation energy: the three dimensional translation energy is derivative with respect to temperature can be used to reach an expression for the normal energy of three dimensional translational motions. Although qtrans depends on the particles and the volume of the container, the thermal energy (U - U0)trans has, for 1 mol of any gas in any volume the value 3/2 RT.

Distribution over quantum states: the distribution expressions for three dimensional motions can be derived by following the same procedure as we do for one dimensional motion before. First, however, we see that we can use one "effective" quantum number n in place of the three dimensional quantum numbers are nx, ny, and nz.

It is enough for us to deal with a quantity that shows the sum of the square of the equation of quantum numbers rather than with the individual values. We introduce the variable n defined by n2 = n2x + n2y + n2z.

Then the allowed energies are given instead of the more detailed manner than the previous one which we have done above. In using the effective quantum number n, we must recognize that there are number of states all with the same value of the energy. The display of states as point shows that, for large n, the additional number of states included when n increases by 1 is equal to 1/2πn2. Thus, if we use n as an effective quantum number, we must use gn = 1/2πn2.

Distribution over Quantum states: the distribution expressions for dimensional motion can be derived by following the same procedure as we did for one dimensional motion. First, however, we see that we can use one 'effective" quantum number n in place of the three quantum numbers nx, ny and nz.

(n2x + n2y + n2z) (h2/8ma2)

It is enough for us to deal with a quantity that shows the sum of the squares of the quantum numbers rather than with the individual values. We introduces the variable n defined by n2 = n2x + n2y + n2z. then the allowed energies are given by n2h2/(8ma2) instead of the more detailed, but no more useful, expression involving nx, ny and nz.

In using the effective quantum number n, we must recognize that there are a number of states all with the same value of n, or of energy εn. The number of states at this energy is the degeneracy gn. The display of states as points shows that, for large n, the additional number of states included when n increases by 1 is equal to ½ ∏n2. Thus if we use n as an effective quantum number we must use gn, ½ ∏n2 as the degeneracy.

   Related Questions in Chemistry

  • Q : What do you mean by the term Organic

    What do you mean by the term Organic Chemistry? Briefly define the term?

  • Q : Volume of solution containing solute

    What volume of solution contains 0.1 mole of the solute: (a) 100ml (b) 125ml  (c) 500ml (d) 62.5ml Choose the right answer from above.

  • Q : Calculation of concentration of the

    Choose the right answer from following. 200ml of a solution contains 5.85 dissolved sodium chloride. The concentration of the solution will be(Na= 23: cl = 35.5 ) (a) 1 molar (b) 2 molar (c) 0.5 molar (d) 0.25 molar

  • Q : Units of Measurement Unit of

    Unit of measurement- These are also some systems for units:      (1) C.G.S.

  • Q : Reaction of calcium carbonate Give me

    Give me answer of this question. What is the volume of 0.1NHcl required to react completely with 1.0g of pure calcium carbonate : (Ca= 40, C= 12 and o = 16 ) (a)150cm3 (b)250cm3 (c)200cm3 (d)100cm3

    Q : Explain polyhalogen compounds with

    Carbon compounds containing more than one halogen atom are called polyhalogen compounds. Most of these compounds are valuable in industry and agriculture. Some important polyhalogen compounds are described as follows:

    Q : Molecular substances what are the most

    what are the most important inorganic molecular substances for living beings?

  • Q : Molar concentration Choose the right

    Choose the right answer from following. Molar concentration (M) of any solution : a) No. of moles of solute/Volume of solution in litre (b) No. of gram equivalent of solute / volume of solution in litre (c) No. of moles os solute/ Mass of solvent in kg  (

  • Q : Thermodynamics 1 Lab Report I already

    I already did Materials and Methods section. I uploaded it with the instructions. Also, make sure to see Concept Questions and Thinking Ahead in the instructions that I uploaded. deadline is tomorow at 8 am here is the link to download all instructions because I couldn't attach all of t

  • Q : What are Ethers and its types? Ethers

    Ethers are the compounds with general formula or CnH2n+