--%>

Theorem-Group is unique and has unique inverse

Let (G; o) be a group. Then the identity of the group is unique and each element of the group has a unique inverse.

In this proof, we will argue completely formally, including all the parentheses and all the occurrences of the group operation o. As we proceed with later work, we will very soon relax our level of formality, omitting avoidable parentheses and uses of the operation symbol.

E

Expert

Verified

Proof:

First, we prove uniqueness of the identity. Suppose that e; e' ≡ G both have the property stated in the axiom for the identity; that is,

g o e = e o g = g and g o e' = e' o g = g

for all g ≡ G. For uniqueness, we need to prove that e = e'.

Applying the First equation above to g = e' and the second to g = e, we get

e'o e = e o e' = e' and e o e' = e'o e = e:

Comparing these gives e = e', as required.

Second, we prove that each element of G has a unique inverse. Suppose that for a fixed g ≡ G there are elements h and k which both have the property required of an inverse; that is,

g o h = h o g = e and g o k = k o g = e:

We need to prove that h = k.

Multiplying through the equation k o g = e on the right by h gives

(k o g) o h = e o h;

associativity gives

k o (g o h) = e o h;

and then since g o h = e we have

k o e = e o h:

Using the fact that e is the identity, we nally

get k = h, as required.

   Related Questions in Mathematics

  • Q : Graph Theory is the n-Dimensional Qn

    is the n-Dimensional Qn Hamiltonian? Prove tour answer

  • Q : Formulating linear program of a

    A software company has a new product specifically designed for the lumber industry. The VP of marketing has been given a budget of $1,35,00to market the product over the quarter. She has decided that $35,000 of the budget will be spent promoting the product at the nat

  • Q : Row-echelon matrix Determine into which

    Determine into which of the following 3 kinds (A), (B) and (C) the matrices (a) to (e) beneath can be categorized:       Type (A): The matrix is in both reduced row-echelon form and row-echelon form. Type (B): The matrix

  • Q : Problem on mixed-strategy equilibrium

    Assume three Offices (A, B, & C) in downtown,  simultaneously decide whether to situate in a new Building. The payoff matrix is illustrated below. What is (are) the pure stratgy Nash equilibrium (or equilibria) and mixed-strtegy equilibrium of the game?

  • Q : Explain Factorisation by Fermats method

    Factorisation by Fermat's method: This method, dating from 1643, depends on a simple and standard algebraic identity. Fermat's observation is that if we wish to nd two factors of n, it is enough if we can express n as the di fference of two squares.

  • Q : Elasticity of Demand For the demand

    For the demand function D(p)=410-0.2p(^2), find the maximum revenue.

  • Q : Who derived the Black–Scholes Equation

    Who derived the Black–Scholes Equation?

  • Q : Who developed a rigorous theory for

    Who developed a rigorous theory for Brownian motion?

  • Q : Problem on inventory merchandise AB

    AB Department Store expects to generate the following sales figures for the next three months:                            

  • Q : Breakfast program if the average is

    if the average is 0.27 and we have $500 how much break fastest will we serve by 2 weeks