--%>

Theorem-Group is unique and has unique inverse

Let (G; o) be a group. Then the identity of the group is unique and each element of the group has a unique inverse.

In this proof, we will argue completely formally, including all the parentheses and all the occurrences of the group operation o. As we proceed with later work, we will very soon relax our level of formality, omitting avoidable parentheses and uses of the operation symbol.

E

Expert

Verified

Proof:

First, we prove uniqueness of the identity. Suppose that e; e' ≡ G both have the property stated in the axiom for the identity; that is,

g o e = e o g = g and g o e' = e' o g = g

for all g ≡ G. For uniqueness, we need to prove that e = e'.

Applying the First equation above to g = e' and the second to g = e, we get

e'o e = e o e' = e' and e o e' = e'o e = e:

Comparing these gives e = e', as required.

Second, we prove that each element of G has a unique inverse. Suppose that for a fixed g ≡ G there are elements h and k which both have the property required of an inverse; that is,

g o h = h o g = e and g o k = k o g = e:

We need to prove that h = k.

Multiplying through the equation k o g = e on the right by h gives

(k o g) o h = e o h;

associativity gives

k o (g o h) = e o h;

and then since g o h = e we have

k o e = e o h:

Using the fact that e is the identity, we nally

get k = h, as required.

   Related Questions in Mathematics

  • Q : Explain a rigorous theory for Brownian

    Explain a rigorous theory for Brownian motion developed by Wiener Norbert.

  • Q : State Prime number theorem Prime number

    Prime number theorem: A big deal is known about the distribution of prime numbers and of the prime factors of a typical number. Most of the mathematics, although, is deep: while the results are often not too hard to state, the proofs are often diffic

  • Q : The mean of the sampling distribution

    1. Caterer determines that 87% of people who sampled the food thought it was delicious. A random sample of 144 out of population of 5000 taken. The 144 are asked to sample the food. If P-hat is the proportion saying that the food is delicious, what is the mean of the sampling distribution p-hat?<

  • Q : How do it? integral e^(-t)*e^(tz) t

    integral e^(-t)*e^(tz) t between 0 and infinity for Re(z)<1

  • Q : Pig Game Using the PairOfDice class

    Using the PairOfDice class design and implement a class to play a game called Pig. In this game the user competes against the computer. On each turn the player rolls a pair of dice and adds up his or her points. Whoever reaches 100 points first, wins. If a player rolls a 1, he or she loses all point

  • Q : Containee problem For queries Q 1 and Q

    For queries Q1 and Q2, we say Q1 is containedin Q2, denoted Q1 C Q2, iff Q1(D) C Q2

  • Q : Statistics math Detailed explanation of

    Detailed explanation of requirements for Part C-1 The assignment states the following requirement for Part 1, which is due at the end of Week 4: “Choose a topic from your field of study. Keep in mind you will need to collect at least [sic] 3- points of data for this project. Construct the sheet y

  • Q : Numerical solution of PDE this

    this assignment contains two parts theoretical and coding the code has to be a new. old code and modified code will appear in the university website .

  • Q : Problem on Maple (a) Solve the

    (a) Solve the following  by: (i) First reducing the system of first order differentiat equations to a second order differential equation. (ii) Decoupling the following linear system of equa

  • Q : Where would we be without stochastic

    Where would we be without stochastic or Ito^ calculus?