--%>

Theorem-Group is unique and has unique inverse

Let (G; o) be a group. Then the identity of the group is unique and each element of the group has a unique inverse.

In this proof, we will argue completely formally, including all the parentheses and all the occurrences of the group operation o. As we proceed with later work, we will very soon relax our level of formality, omitting avoidable parentheses and uses of the operation symbol.

E

Expert

Verified

Proof:

First, we prove uniqueness of the identity. Suppose that e; e' ≡ G both have the property stated in the axiom for the identity; that is,

g o e = e o g = g and g o e' = e' o g = g

for all g ≡ G. For uniqueness, we need to prove that e = e'.

Applying the First equation above to g = e' and the second to g = e, we get

e'o e = e o e' = e' and e o e' = e'o e = e:

Comparing these gives e = e', as required.

Second, we prove that each element of G has a unique inverse. Suppose that for a fixed g ≡ G there are elements h and k which both have the property required of an inverse; that is,

g o h = h o g = e and g o k = k o g = e:

We need to prove that h = k.

Multiplying through the equation k o g = e on the right by h gives

(k o g) o h = e o h;

associativity gives

k o (g o h) = e o h;

and then since g o h = e we have

k o e = e o h:

Using the fact that e is the identity, we nally

get k = h, as required.

   Related Questions in Mathematics

  • Q : State Prime number theorem Prime number

    Prime number theorem: A big deal is known about the distribution of prime numbers and of the prime factors of a typical number. Most of the mathematics, although, is deep: while the results are often not too hard to state, the proofs are often diffic

  • Q : How to get calculus homework done from

    How to get calculus homework done from tutor

  • Q : Set Theory & Model of a Boolean Algebra

    II. Prove that Set Theory is a Model of a Boolean Algebra The three Boolean operations of Set Theory are the three set operations of union (U), intersection (upside down U), and complement ~.  Addition is set

  • Q : Explain Factorisation by Fermats method

    Factorisation by Fermat's method: This method, dating from 1643, depends on a simple and standard algebraic identity. Fermat's observation is that if we wish to nd two factors of n, it is enough if we can express n as the di fference of two squares.

  • Q : Relationships Between Data Introduction

    Relationships Between Data - Introduction to Linear Regression Simple Regression Notes If you need guidance in terms of using Excel to run regressions, check pages 1 - 10 of the Excel - Linear Regression Tutorial posted to th

  • Q : Ordinary Differential Equation or ODE

    What is an Ordinary Differential Equation (ODE)?

  • Q : Who firstly discovered mathematical

    Who firstly discovered mathematical theory for random walks, that rediscovered later by Einstein?

  • Q : Problem on budgeted cash collections

    XYZ Company collects 20% of a month's sales in the month of sale, 70% in the month following sale, and 5% in the second month following sale. The remainder is not collectible. Budgeted sales for the subsequent four months are:     

  • Q : First-order formulas over the

    Consider the unary relational symbols P and L, and the binary relational symbol On, where P(a) and I(a) encode that a is apoint and a (sraight) line in the 2-dimensional space, respectively, while On(a,b) encodes  that a is a point, b is a line, and o lies on b.

  • Q : Problem on Datalog for defining

    The focus is on  the use of Datalog for defining properties  and queries on graphs. (a) Assume that P is some property of graphs  definable in the Datalog. Show that P is preserved beneath extensions  and homomo