--%>

Theorem-Group is unique and has unique inverse

Let (G; o) be a group. Then the identity of the group is unique and each element of the group has a unique inverse.

In this proof, we will argue completely formally, including all the parentheses and all the occurrences of the group operation o. As we proceed with later work, we will very soon relax our level of formality, omitting avoidable parentheses and uses of the operation symbol.

E

Expert

Verified

Proof:

First, we prove uniqueness of the identity. Suppose that e; e' ≡ G both have the property stated in the axiom for the identity; that is,

g o e = e o g = g and g o e' = e' o g = g

for all g ≡ G. For uniqueness, we need to prove that e = e'.

Applying the First equation above to g = e' and the second to g = e, we get

e'o e = e o e' = e' and e o e' = e'o e = e:

Comparing these gives e = e', as required.

Second, we prove that each element of G has a unique inverse. Suppose that for a fixed g ≡ G there are elements h and k which both have the property required of an inverse; that is,

g o h = h o g = e and g o k = k o g = e:

We need to prove that h = k.

Multiplying through the equation k o g = e on the right by h gives

(k o g) o h = e o h;

associativity gives

k o (g o h) = e o h;

and then since g o h = e we have

k o e = e o h:

Using the fact that e is the identity, we nally

get k = h, as required.

   Related Questions in Mathematics

  • Q : Problem on Datalog for defining

    The focus is on  the use of Datalog for defining properties  and queries on graphs. (a) Assume that P is some property of graphs  definable in the Datalog. Show that P is preserved beneath extensions  and homomo

  • Q : How to get calculus homework done from

    How to get calculus homework done from tutor

  • Q : Theorem-Group is unique and has unique

    Let (G; o) be a group. Then the identity of the group is unique and each element of the group has a unique inverse.In this proof, we will argue completely formally, including all the parentheses and all the occurrences of the group operation o. As we proce

  • Q : Properties of a group How can we say

    How can we say that the pair (G, o) is a group. Explain the properties which proof it.

  • Q : State Fermat algorithm The basic Fermat

    The basic Fermat algorithm is as follows: Assume that n is an odd positive integer. Set c = [√n] (`ceiling of √n '). Then we consider in turn the numbers c2 - n; (c+1)2 - n; (c+2)2 - n..... until a perfect square is found. If th

  • Q : Mathematical Method for Engineers The

     The function is clearly undefined at , but despite all of this the function does have a limit as approaches 0. a) Use MATLAB and ezplot to sketch for , and use the zoom on facility to guess the . You need to include you M-file, outp

  • Q : Statistics math Detailed explanation of

    Detailed explanation of requirements for Part C-1 The assignment states the following requirement for Part 1, which is due at the end of Week 4: “Choose a topic from your field of study. Keep in mind you will need to collect at least [sic] 3- points of data for this project. Construct the sheet y

  • Q : Numerical solution of PDE this

    this assignment contains two parts theoretical and coding the code has to be a new. old code and modified code will appear in the university website .

  • Q : Uniform scaling what is uniform scaling

    what is uniform scaling in computer graphic

  • Q : What is Big-O hierarchy The big-O

    The big-O hierarchy: A few basic facts about the big-O behaviour of some familiar functions are very important. Let p(n) be a polynomial in n (of any degree). Then logbn is O(p(n)) and p(n) is O(an<