--%>

State Prime number theorem

Prime number theorem: A big deal is known about the distribution of prime numbers and of the prime factors of a typical number. Most of the mathematics, although, is deep: while the results are often not too hard to state, the proofs are often difficult. We will introduce one fundamental and extremely significant theorem about the distribution of prime numbers. (Its proof is one of the difficult ones!)

Let x be any positive number. We denote by Π (x) the number of prime numbers less than or equal to x. The prime number theorem was conjectured by Gauss in the year 1791 (at the age of 14!), but was not proved until 1896, when it was proved independently through Jacques Hadamard and Charles de la Vallee Poussin.

982_prime number.jpg

(Remember that ln x denotes the natural logarithm of x: ln x = loge x.)

   Related Questions in Mathematics

  • Q : Budgeted cash disbursements The ABC

    The ABC Company, a merchandising firm, has budgeted its action for December according to the following information: • Sales at $560,000, all for cash. • The invoice cost for goods purc

  • Q : Mathematical Method for Engineers The

     The function is clearly undefined at , but despite all of this the function does have a limit as approaches 0. a) Use MATLAB and ezplot to sketch for , and use the zoom on facility to guess the . You need to include you M-file, outp

  • Q : How to get calculus homework done from

    How to get calculus homework done from tutor

  • Q : What is Big-O hierarchy The big-O

    The big-O hierarchy: A few basic facts about the big-O behaviour of some familiar functions are very important. Let p(n) be a polynomial in n (of any degree). Then logbn is O(p(n)) and p(n) is O(an<

  • Q : Use MS Excel to do the computations

    Select a dataset of your interest (preferably related to your company/job), containing one variable and atleast 100 data points. [Example: Annual profit figures of 100 companies for the last financial year]. Once you select the data, you should compute 4-5 summary sta

  • Q : Problem on reduced row-echelon The

    The augmented matrix from a system of linear equations has the following reduced row-echelon form. 280_row echelon method.jpg

  • Q : Who developed a rigorous theory for

    Who developed a rigorous theory for Brownian motion?

  • Q : Abstract Boolean Algebra I. Boolean

    I. Boolean Algebra Define an abstract Boolean Algebra, B,  as follows:  The three operations are:  +   ( x + y addition) ( x y multiplic

  • Q : State Fermat algorithm The basic Fermat

    The basic Fermat algorithm is as follows: Assume that n is an odd positive integer. Set c = [√n] (`ceiling of √n '). Then we consider in turn the numbers c2 - n; (c+1)2 - n; (c+2)2 - n..... until a perfect square is found. If th

  • Q : Elasticity of Demand For the demand

    For the demand function D(p)=410-0.2p(^2), find the maximum revenue.