--%>

State Prime number theorem

Prime number theorem: A big deal is known about the distribution of prime numbers and of the prime factors of a typical number. Most of the mathematics, although, is deep: while the results are often not too hard to state, the proofs are often difficult. We will introduce one fundamental and extremely significant theorem about the distribution of prime numbers. (Its proof is one of the difficult ones!)

Let x be any positive number. We denote by Π (x) the number of prime numbers less than or equal to x. The prime number theorem was conjectured by Gauss in the year 1791 (at the age of 14!), but was not proved until 1896, when it was proved independently through Jacques Hadamard and Charles de la Vallee Poussin.

982_prime number.jpg

(Remember that ln x denotes the natural logarithm of x: ln x = loge x.)

   Related Questions in Mathematics

  • Q : How to get calculus homework done from

    How to get calculus homework done from tutor

  • Q : Elementary Logic Set & Model of a

    Prove that Elementary Logic Set is a Model of a Boolean Algebra The three Boolean operations of Logic are the three logical operations of  OR ( V ), AN

  • Q : Explain Black–Scholes model Explain

    Explain Black–Scholes model.

  • Q : Problem on Maple (a) Solve the

    (a) Solve the following  by: (i) First reducing the system of first order differentiat equations to a second order differential equation. (ii) Decoupling the following linear system of equa

  • Q : Pig Game Using the PairOfDice class

    Using the PairOfDice class design and implement a class to play a game called Pig. In this game the user competes against the computer. On each turn the player rolls a pair of dice and adds up his or her points. Whoever reaches 100 points first, wins. If a player rolls a 1, he or she loses all point

  • Q : What is Non-Logical Vocabulary

    Non-Logical Vocabulary: 1. Predicates, called also relation symbols, each with its associated arity. For our needs, we may assume that the number of predicates is finite. But this is not essential. We can have an infinite list of predicates, P

  • Q : Formal Logic It's a problem set, they

    It's a problem set, they are attached. it's related to Sider's book which is "Logic to philosophy" I attached the book too. I need it on feb22 but feb23 still work

  • Q : Examples of groups Examples of groups:

    Examples of groups: We now start to survey a wide range of examples of groups (labelled by (A), (B), (C), . . . ). Most of these come from number theory. In all cases, the group axioms should be checked. This is easy for almost all of the examples, an

  • Q : Formal logic It's a problem set, they

    It's a problem set, they are attached. it's related to Sider's book which is "Logic to philosophy" I attached the book too. I need it on feb22 but feb23 still work

  • Q : Where would we be without stochastic

    Where would we be without stochastic or Ito^ calculus?