--%>

State Littles Law

Little’s Law:

• L = λR = XR

• Lq = λW = XW

• Steady state system

• Little’s Law holds as long as customers are not destroyed or created, no matter what:

– Type of system or where the system boundaries are
– The number of servers
– The characteristics (randomness, regularity) of the arrival stream
– The characteristics of the service times
– The queue discipline or scheduling system

   Related Questions in Basic Statistics

  • Q : Explain Service times Service times: A)

    Service times:A) In most cases, servicing a request takes a “short” time, but in a few occasions requests take much longer.B) The probability of completing a service request by time t, is independent of how much tim

  • Q : Define Service Demand Law

    Service Demand Law:• Dk = SKVK, Average time spent by a typical request obtaining service from resource k• DK = (ρk/X

  • Q : Time series what are the four

    what are the four components of time series?

  • Q : Statistics for Management Assignment

    Q : What is Inter-arrival times

    Inter-arrival times:A) Requests arrive randomly, often separated by small time intervals with few long separations among themB) The time until the next arrival is independent of when the last arrival occurredC) Coro

  • Q : Get Solved LP Problems Solve Linear

    Solve Linear Programming Questions A producer manufactures 3 models (I, II and III) of a particular product. He uses 2 raw materials A and B of which 4000 and 6000 units respectively are obtainable. The raw materials per unit of 3

  • Q : Derived quantities in Queuing system

    Derived quantities in Queuing system: • λ = A / T, Arrival rate • X = C / T, Throughput or completion rate • ρ =U= B / T, Utilization &bu

  • Q : Average think time Software monitor

    Software monitor data for an interactive system shows a CPU utilization of 75%, a 3 second CPU service demand, a response time of 15 seconds, and 10 active users. Determine the average think time of these users?

  • Q : Problem on Model Checking Part (a).

    Part (a). Draw a state diagram for a car with the following state variables: D indicating whether the car is in drive; B indicating the brake pedal is depressed; G indicating the gas pedal is depressed; and M indicating whether the car is moving. (For example, the sta

  • Q : Define SPIN simulation modes SPIN: •

    SPIN: • SPIN generates C program that is the model checker – The pan verifier • Process Analyzer – Run the pan executable to do the model check