--%>

Solution Of Laplace’s Equation

1. Solve Laplace's equation for the electrical potential between two infinite parallel plates, which have a charge density per unit area -on one plate and a charge density per unit area -! on the second plate, and determine the electric field between the plates from the potential. (You should use the fact that for plates of infinite area, the potential only depends on distances perpendicular to the plates. (Since the object of this problem is to solve Laplace's equation for a problem for which you already know the electric field, if all that you do is to quote the value for the electric field that you already know from Gauss's law, without solving Laplace's equation, you will receive no credit.)

2. The Coulomb potential 1853_123.pngcan be written as r-1F(u, x), where F(u, x) = [1 - 2ux + u2]-1/2, where u = r!/r and x = cos Θ, where Θ is the angle between 1928_1234.pngand 1928_1234.png. Expand F(u, x) up to third order in u, and by doing so, demonstrate that the Taylor series for F(x, x), as a function of u,

2472_12341323.png

is valid to third order in u. (Therefore,

1810_54444.png

Incidentally, F(u, x) is known as the generating function for the spherical harmonics because its derivatives are proportional to the spherical harmonics.)

3. A point dipole is placed at the center of a grounded spherical conducting shell. Find the resulting potential inside the shell, (Hint: You must add to the expression for the potential due to a point dipole solutions to Laplace's equation that do not diverge at the center of the sphere, which we will assume to be the origin of coordinates.)

4. A long cylindrical conductor is placed in an initially (i.e., before the cylinder is present)uniform electric field which is perpendicular to the axis of the cylinder.

a) Find the electrical potential outside of the cylinder.

b) Find the surface charge density on the cylinder.

c) What is the electrical potential inside the cylinder when it is in the electric field.

   Related Questions in Physics

  • Q : Define Singularity Singularity : The

    Singularity: The center of a black hole, where the curvature of space-time is maximal. At singularity, the gravitational tides deviate; no solid object can yet theoretically survive beating the singularity. Though singularities usually predict inconsi

  • Q : What is Wiens displacement law constant

    Wien's displacement law constant, b: It is the constant of Wien displacement law. This has the value of 2.897 756 x 10-3 m K.

  • Q : Rest mass energy of the electron What

    What do you mean by the rest mass energy of the electron?

  • Q : Velocity of the particle Determine the

    Determine the Velocity of the particle in terms of component veocities?

  • Q : Define Sievert or SI unit of dose

    Sievert: Sv: The derived SI unit of dose equivalent, stated as the absorbed dose of the ionizing radiation multiplied by internationally-agreed-upon dimensionless weights, as various kinds of ionizing radiation cause various kinds of damage in the liv

  • Q : Define Universal constant of gravitation

    Universal constant of gravitation: G The constant of proportionality in the Newton’s law of universal gravitation and that plays a comparable role in Sir Einstein's general relativity. This is equivalent to the 6.672 x 10-1

  • Q : Explain Poisson equation and Poisson

    Explain Poisson equation and Poisson spot: Poisson equation (S.D. Poisson): The differential form of Gauss' law, that is, div E = rho, Pois

  • Q : Define Compton Effect Compton Effect

    Compton Effect (A.H. Compton; 1923): The effect which describes those photons (that is the quantum of electromagnetic radiation) has momentum. The photon fired at a stationary particle, like an electron, will communicate momentum to t

  • Q : What is Cherenkov radiation Cherenkov

    Cherenkov radiation (P.A. Cherenkov): The radiation emitted by a huge particle which is moving faster than light in the medium via which it is travelling. No particle can travel faster than the light in vacuum, however the speed of light in other medi

  • Q : State Hooke's law as it applies to a

    a 6.00 kg mass is situated at (-1.00, 3.00) meters, what is its mass moment of inertia: a)about the x-axis b)about the y-axis c)About a line defined by x=6.00 m The same object is hun