--%>

Solution Of Laplace’s Equation

1. Solve Laplace's equation for the electrical potential between two infinite parallel plates, which have a charge density per unit area -on one plate and a charge density per unit area -! on the second plate, and determine the electric field between the plates from the potential. (You should use the fact that for plates of infinite area, the potential only depends on distances perpendicular to the plates. (Since the object of this problem is to solve Laplace's equation for a problem for which you already know the electric field, if all that you do is to quote the value for the electric field that you already know from Gauss's law, without solving Laplace's equation, you will receive no credit.)

2. The Coulomb potential 1853_123.pngcan be written as r-1F(u, x), where F(u, x) = [1 - 2ux + u2]-1/2, where u = r!/r and x = cos Θ, where Θ is the angle between 1928_1234.pngand 1928_1234.png. Expand F(u, x) up to third order in u, and by doing so, demonstrate that the Taylor series for F(x, x), as a function of u,

2472_12341323.png

is valid to third order in u. (Therefore,

1810_54444.png

Incidentally, F(u, x) is known as the generating function for the spherical harmonics because its derivatives are proportional to the spherical harmonics.)

3. A point dipole is placed at the center of a grounded spherical conducting shell. Find the resulting potential inside the shell, (Hint: You must add to the expression for the potential due to a point dipole solutions to Laplace's equation that do not diverge at the center of the sphere, which we will assume to be the origin of coordinates.)

4. A long cylindrical conductor is placed in an initially (i.e., before the cylinder is present)uniform electric field which is perpendicular to the axis of the cylinder.

a) Find the electrical potential outside of the cylinder.

b) Find the surface charge density on the cylinder.

c) What is the electrical potential inside the cylinder when it is in the electric field.

   Related Questions in Physics

  • Q : Law of Lamberts Cosine State the law of

    State the law of Lamberts Cosine? Describe briefly?

  • Q : What it means of Aberration Defining 

    Defining Aberration: The obvious change in the position of a light-emitting object due to the fidelity of the speed of light and the

  • Q : What is Huygens construction Huygens'

    Huygens' construction: Huygens ‘Principle (C. Huygens): The mechanical propagation of the wave (specially, of light) is equal to supposing that every point on the wave front acts as a point source of the wave emission.

  • Q : Explain Youngs experiment or

    Young's experiment: double-slit experiment (T. Young; 1801): A well-known experiment that exhibits the wave nature of light (and certainly of other particles). The light is passed from a small source into an opaque screen with the two thin slits. The

  • Q : Define Sievert or SI unit of dose

    Sievert: Sv: The derived SI unit of dose equivalent, stated as the absorbed dose of the ionizing radiation multiplied by internationally-agreed-upon dimensionless weights, as various kinds of ionizing radiation cause various kinds of damage in the liv

  • Q : Explain Photoelectric effect

    Photoelectric effect: An effect described by A. Einstein that demonstrates that light seems to be made up of particles, or photons. The light can excite electrons (termed as photoelectrons in this context) to be ejected from the metal. Light with a fr

  • Q : Define Cosmic background radiation or

    Cosmic background radiation: primal glow: The background of radiation is generally in the frequency range of 3 x 1011 to 3 x 108 Hz discovered in space in the year 1965. It is believed to be the cosmologically re

  • Q : Universal law of universal gravitation

    Describe the universal law of universal gravitation? Briefly describe it.

  • Q : Calculate the intensity I along y axis

    As shown in the figure below, a source at S is sending out a spherical wave: E1=(A×D/r) cos(wt-2πr/λ); where r is the distance to source

  • Q : What are Woodward-Hoffmann rules

    Woodward-Hoffmann rules: The rules leading the formation of products throughout certain kinds of organic reactions.