--%>

Solution Of Laplace’s Equation

1. Solve Laplace's equation for the electrical potential between two infinite parallel plates, which have a charge density per unit area -on one plate and a charge density per unit area -! on the second plate, and determine the electric field between the plates from the potential. (You should use the fact that for plates of infinite area, the potential only depends on distances perpendicular to the plates. (Since the object of this problem is to solve Laplace's equation for a problem for which you already know the electric field, if all that you do is to quote the value for the electric field that you already know from Gauss's law, without solving Laplace's equation, you will receive no credit.)

2. The Coulomb potential 1853_123.pngcan be written as r-1F(u, x), where F(u, x) = [1 - 2ux + u2]-1/2, where u = r!/r and x = cos Θ, where Θ is the angle between 1928_1234.pngand 1928_1234.png. Expand F(u, x) up to third order in u, and by doing so, demonstrate that the Taylor series for F(x, x), as a function of u,

2472_12341323.png

is valid to third order in u. (Therefore,

1810_54444.png

Incidentally, F(u, x) is known as the generating function for the spherical harmonics because its derivatives are proportional to the spherical harmonics.)

3. A point dipole is placed at the center of a grounded spherical conducting shell. Find the resulting potential inside the shell, (Hint: You must add to the expression for the potential due to a point dipole solutions to Laplace's equation that do not diverge at the center of the sphere, which we will assume to be the origin of coordinates.)

4. A long cylindrical conductor is placed in an initially (i.e., before the cylinder is present)uniform electric field which is perpendicular to the axis of the cylinder.

a) Find the electrical potential outside of the cylinder.

b) Find the surface charge density on the cylinder.

c) What is the electrical potential inside the cylinder when it is in the electric field.

   Related Questions in Physics

  • Q : Balanced field takeoff Describe the

    Describe the process of balanced field takeoff in brief?

  • Q : When the intermolecular forces are

    Describe when the intermolecular forces are strongest? Briefly state it.

  • Q : What is Standard quantum limit Standard

    Standard quantum limit: It is the limit obligatory on standard techniques of measurement by the uncertainty principle in quantum mechanics.

  • Q : Explain Lagrange points Lagrange points

    Lagrange points: The points in the vicinity of two massive bodies (like the Earth and Moon) with each others' relevant gravities balance. There are five, labeled L1 via L5. L1, L2, and L3 lie all along the centerline among the centers

  • Q : Define Newton or SI unit of force

    Newton: N (after Sir I. Newton, 1642-1727): The derived SI unit of force, stated as the force needed to give a mass of 1 kg of an acceleration of 1 m/s2; it therefore has units of kg m/s2.

  • Q : Plasma globe AD advantages and

    advantages and disadvantages of a plasma globe

  • Q : Explain Casimir effect Casimir effect

    Casimir effect (Casimir): The quantum mechanical effect, where two very big plates positioned close to each other will experience an attractive force, in the nonattendance of other forces. The cause is implicit particle-antiparticle p

  • Q : Define Siemens or SI unit of an

    Siemens: S (after E.W. von Siemens, 1816-1892): The derived SI unit of an electrical conductance equivalent to the conductance of an element which has a resistance of 1 O [ohm]; this has units of O-1.

  • Q : Physics Assignement Answers and

    Answers and explanation to all the questions.

  • Q : Explain Ohms law Ohm's law (G. Ohm;

    Ohm's law (G. Ohm; 1827): The ratio of the potential difference among the ends of a conductor to the current flowing via it is constant; the constant of proportionality is termed as the resistance, and is distinct for different materials.