--%>

Solution Of Laplace’s Equation

1. Solve Laplace's equation for the electrical potential between two infinite parallel plates, which have a charge density per unit area -on one plate and a charge density per unit area -! on the second plate, and determine the electric field between the plates from the potential. (You should use the fact that for plates of infinite area, the potential only depends on distances perpendicular to the plates. (Since the object of this problem is to solve Laplace's equation for a problem for which you already know the electric field, if all that you do is to quote the value for the electric field that you already know from Gauss's law, without solving Laplace's equation, you will receive no credit.)

2. The Coulomb potential 1853_123.pngcan be written as r-1F(u, x), where F(u, x) = [1 - 2ux + u2]-1/2, where u = r!/r and x = cos Θ, where Θ is the angle between 1928_1234.pngand 1928_1234.png. Expand F(u, x) up to third order in u, and by doing so, demonstrate that the Taylor series for F(x, x), as a function of u,

2472_12341323.png

is valid to third order in u. (Therefore,

1810_54444.png

Incidentally, F(u, x) is known as the generating function for the spherical harmonics because its derivatives are proportional to the spherical harmonics.)

3. A point dipole is placed at the center of a grounded spherical conducting shell. Find the resulting potential inside the shell, (Hint: You must add to the expression for the potential due to a point dipole solutions to Laplace's equation that do not diverge at the center of the sphere, which we will assume to be the origin of coordinates.)

4. A long cylindrical conductor is placed in an initially (i.e., before the cylinder is present)uniform electric field which is perpendicular to the axis of the cylinder.

a) Find the electrical potential outside of the cylinder.

b) Find the surface charge density on the cylinder.

c) What is the electrical potential inside the cylinder when it is in the electric field.

   Related Questions in Physics

  • Q : Universal law of universal gravitation

    Describe the universal law of universal gravitation? Briefly describe it.

  • Q : Define Lumen or SI unit of luminous flux

    Lumen: lm: The derived SI unit of luminous flux, stated as the luminous flux produced by a uniform point source of 1 cd releasing its luminous energy over a solid angle of 1 sr; it therefore has units of cd sr.

  • Q : Define Watt or SI unit of power Watt: W

    Watt: W (after J. Watt, 1736-1819): The derived SI unit of power, stated as a power of 1 J acting over the period of 1 s; it therefore has the units of J/s.

  • Q : Possibility to obtain the electron Is

    Is it possible to obtain the electron (or come out) from the nucleus?

  • Q : Conservation laws and illustrations of

    Explain Conservation laws and illustrations of conservation laws (Conservation of mass-energy, electric charge, linear momentum and angular momentum) ? Conservation laws: The law which states that,

  • Q : What is Edwards-Casimir quantum vacuum

    What is Edwards-Casimir quantum vacuum drive: The hypothetical drive developing the peculiarities of quantum mechanics by restricting permitting wavelengths of the virtual photons on one side of the drive (that is the bow of the ship); the pressure pr

  • Q : Define Ergosphere Ergosphere: The area

    Ergosphere: The area around a rotating black hole, among the event horizon and the static limit, where the rotational energy can be removed from the black hole.

  • Q : Explain Lamberts laws or Lamberts

    What is Lamberts laws or Lamberts first law, second law and third law: Lambert's laws (J.H. Lambert) Lambert's first l

  • Q : What is Hawking temperature Hawking

    Hawking temperature: The temperature of a black hole is caused by the emission of the hawking radiation. For a black hole with mass m, it is illustrated as: T = (hbar c3)/(8 pi G k m).

  • Q : On which gravitational force depends

    Explain in short on which the gravitational force depends on?