--%>

Solution Of Laplace’s Equation

1. Solve Laplace's equation for the electrical potential between two infinite parallel plates, which have a charge density per unit area -on one plate and a charge density per unit area -! on the second plate, and determine the electric field between the plates from the potential. (You should use the fact that for plates of infinite area, the potential only depends on distances perpendicular to the plates. (Since the object of this problem is to solve Laplace's equation for a problem for which you already know the electric field, if all that you do is to quote the value for the electric field that you already know from Gauss's law, without solving Laplace's equation, you will receive no credit.)

2. The Coulomb potential 1853_123.pngcan be written as r-1F(u, x), where F(u, x) = [1 - 2ux + u2]-1/2, where u = r!/r and x = cos Θ, where Θ is the angle between 1928_1234.pngand 1928_1234.png. Expand F(u, x) up to third order in u, and by doing so, demonstrate that the Taylor series for F(x, x), as a function of u,

2472_12341323.png

is valid to third order in u. (Therefore,

1810_54444.png

Incidentally, F(u, x) is known as the generating function for the spherical harmonics because its derivatives are proportional to the spherical harmonics.)

3. A point dipole is placed at the center of a grounded spherical conducting shell. Find the resulting potential inside the shell, (Hint: You must add to the expression for the potential due to a point dipole solutions to Laplace's equation that do not diverge at the center of the sphere, which we will assume to be the origin of coordinates.)

4. A long cylindrical conductor is placed in an initially (i.e., before the cylinder is present)uniform electric field which is perpendicular to the axis of the cylinder.

a) Find the electrical potential outside of the cylinder.

b) Find the surface charge density on the cylinder.

c) What is the electrical potential inside the cylinder when it is in the electric field.

   Related Questions in Physics

  • Q : Define Planck constant Planck constant

    Planck constant: h: The basic constant equivalent to the ratio of the energy of a quantum of energy to its frequency. This is the quantum of action. This has the value 6.626 196 x 10-34 J s.

  • Q : Define Stefan-Boltzmann constant

    Stefan-Boltzmann constant: sigma (Stefan, L. Boltzmann): The constant of proportionality exist in the Stefan-Boltzmann law. It is equivalent to 5.6697 x 10-8 W/m2/K4.

  • Q : Does solar radiation encompass a

    Does solar radiation encompass a complete spectrum of all the forms of electromagnetic radiation?

  • Q : Problem on spacecraft Assuming that

    Assuming that ground stations are equally distributed on the Earth, how many ground stations are required to maintain constant contact with a spacecraft at 750 km altitude, and 72 degrees inclination?

  • Q : Define Newton meter What do you mean by

    What do you mean by the term Newton meter? Explain briefly?

  • Q : Explain Rydberg formula Rydberg formula

    Rydberg formula (Rydberg): The formula that explains all of the characteristics of hydrogen's spectrum, comprising the Balmer, Paschen, Lyman, Brackett, and Pfund sequence. For the transition between an electron in

  • Q : Polarization In a non-polar - molecule,

    In a non-polar - molecule, the centre of the nuclei and electron orbit overlap when such a molecule is positioned in electric field, the electrons are attracted with the positive charged of the anode and repelled by the negative charges of the cathode. Because of grea

  • Q : What is Simultaneity principle

    Simultaneity principle: The principle which all frames of reference will contain invariant simultaneity; that is, the two events perceived as simultaneous (that is, containing the similar time coordinate) in one frame will be apparent as simultaneous

  • Q : Define Hertz or SI unit of frequency

    Define Hertz or SI unit of frequency: Hertz: Hz (after H. Hertz, 1857-1894): The derived SI unit of frequency, stated as a frequency of 1 cycle per s; it therefore has units of s-1.

  • Q : Explain Cosmological constant

    Cosmological constant (Lambda): The constant mentioned to the Einstein field equation, proposed to admit the static cosmological solutions. At the time the present philosophical view was steady-state model of the space, where the Universe has been aro