--%>

Simulate the column in HYSYS

The objective of this work is to separate a binary mixture and to cool down the bottom product for storage. (Check table below to see which mixture you are asked to study).

100 kmol of feed containing 10 mol percent of the lighter component enters a continuous distillation column at the mixture bubble point and the vapour leaving the column is condensed but not cooled and provides reflux and product.

The separation required is 90% of the maximum achievable separation in terms of top product molar composition. It is required to find the number of plates required and the feed plate position.

Part 1:

1.1. Determine an appropriate thermodynamic model for your binary system using the experimental data given Perry's Chemical Engineers' Handbook . (You may want to try more than one option)

 

Part 2:

2.1. Simulate the column in HYSYS using a short cut distillation approach.

2.2. Simulate the column in HYSYS using a stage-to-stage model.

 

For each case you are required to state the number of stages and the position of the feed as well as the top and bottom compositions.

You will need to discuss the differences between the two approaches as well as the differences between the results produced by the two approaches. You will also be required to discuss the effect of varying different parameters of your choice.

Part 3:

For storage purposes, the bottom product of the stage to stage column needs to be cooled to 30oC using a shell and tube heat exchanger. Cooling water is available at 15oC.

3.1. Simulate the heat exchanger in HYSYS.

3.2. Simulate the heat exchanger in EXCEL.

 

Your Excel spreadsheet should be understandable and user friendly. Make use of the comment boxes and/or text to comment on the construction, calculations and use of your spreadsheet.

Your HYSYS simulation should allow you to check the effect of varying:

? LMTD through the inclusion and exclusion of the correction factor.

? Varying the Tube Bundle in sensible ways and drawing sensible conclusions.

? Do some simulations on the appropriate shell sizes.

? Vary any other parameter that you can sensibly and meaningfully simulate

 

As per the exercise done in class, your spreadsheet should be capable of

? Doing the ENERGY BALANCE

? Calculating a LMTD

? Inserting an external correction factor for the LMTD

? Calculating a value of UA for the exchanger.

? Calculating a surface area for a stated size of Tube Bundle

? Making adjustments as required to the values of A and hence U.

 

Both your EXCEL Spreadsheet and the HYSYS simulation should allow you to make recommendations as to which heat exchanger conditions to use.

You will need to discuss any differences between the two sets of results.

Your report

You are asked to produce a report addressing all the points outlined above and support your report with the EXCEL and HYSYS files as appropriate.

Although this is an open ended exercise, your report should be kept concise and not more than 15 pages.

If necessary and appropriate, use tables, graphs and diagrams to illustrate your answer. Include any detailed calculations in appendices.

It is not necessary to show your general knowledge of distillation, heat exchangers or process simulation - please keep it specific to solving this particular problem. However, you need to include a brief explanation of how the models have been developed making sure to address all the key points.

Ethanol-benzene

   Related Questions in Chemistry

  • Q : Statement of Henry law Determine the

    Determine the correct regarding Henry’s law: (1) The gas is in contact with the liquid must behave as an ideal gas (2) There must not be any chemical interaction among the gas and liquid (3) The pressure applied must be high (4) All of these.

  • Q : Coordination compounds discuss

    discuss practical uses of coordination compounds

  • Q : Explain Solid Compound Formation. In

    In some two component, solid liquid systems, a solid compound forms.In systems in which the components have an interaction for such other, a solid state compound of the two compounds of the two components can form.Formic acid and formaide form a solid state, one-to-one com

  • Q : Ionization Potential Second ionization

    Second ionization potential of Li, Be and B is in the order (a)Li>Be>B (b)Li>B>Be (c)Be>Li>B (d)B>Be>Li

  • Q : Relative lowering of vapour pressure

    Which of the following solutions will have a lower vapour pressure and why? a) A 5% aqueous solution of cane sugar. b) A 5% aqueous solution of urea.

  • Q : Infrared Adsorption The adsorption of

    The adsorption of infrared radiation by diatomic molecules increases the vibrational energy fo molecules and gives information about the force constant for the "spring" of the molecule.;The molecular motion that has the next larger energy level spacing aft

  • Q : Problem related to molality Help me to

    Help me to solve this problem. What is the molality of a solution which contains 18 g of glucose (C6,H12, O6) in 250 g of water:  (a) 4.0 m (b) 0.4 m (c) 4.2 m (d) 0.8 m

  • Q : Describe characteristics of halides and

    Halides characteristics

  • Q : Group Cations Explain how dissolving

    Explain how dissolving the Group IV carbonate precipitate with 6M CH3COOH, followed by the addition of extra acetic acid, establishes a buffer with a pH of approximately

  • Q : Describe Transformation Matrices. Each

    Each symmetry operation can be represented by a transformation matrix.You have seen what happens when a molecule is subjected to the symmetry operation that corresponds to any of the symmetry elements of the point group to which the molecule belongs. The m