--%>

Simplified demonstration of Littles Law

Simplified demonstration of Little’s Law:

1874_little law.jpg



• a(t): the number of arrivals up to time t
• d(t): the number of departures up to t
• l(t) = a(t) –d(t) ≥ 0, the number of units in the system at time
• H(t): the area enclosed between the curves a(t) & d(t). represents the accumulated time in system during that interval measured in request-seconds (or request-minutes, etc.)

Simplified demonstration:

L ≡ H/T

R ≡ H/C

X ≡ C/T

H/T ≡ (C/T) (H/C);

L = X/R

   Related Questions in Basic Statistics

  • Q : Hw An experiment is conducted in which

    An experiment is conducted in which 60 participants each fill out a personality test, but not according to the way they see themselves. Instead, 20 are randomly assigned to fill it out according to the way they think a parent sees them (i.e. how a parent would fill it out to describe the participant

  • Q : Help An experiment is conducted in

    An experiment is conducted in which 60 participants each fill out a personality test, but not according to the way they see themselves. Instead, 20 are randomly assigned to fill it out according to the way they think a parent sees them (i.e. how a parent would fill it out to describe the participant

  • Q : Define Utilization Law Utilization Law

    Utilization Law: • ρk = XK . SK = X . DK • Utilization of a resource is the fraction

  • Q : What is Forced Flow Law Forced Flow Law

    Forced Flow Law: • The forced flow law captures the relationship between the various components in the system. It states that the throughputs or flows, in all parts of a system must be proportional t

  • Q : Building Models Building Models • What

    Building Models • What do we need to know to build a model?– For model checking we need to specify behavior • Consider a simple vending machine – A custome rinserts coins, selects a beverage and receives a can of soda &bul

  • Q : Problems on ANOVA We are going to

    We are going to simulate an experiment where we are trying to see whether any of the four automated systems (labeled A, B, C, and D) that we use to produce our root beer result in a different specific gravity than any of the other systems. For this example, we would l

  • Q : Explain Queuing theory Queuing theory :

    Queuing theory: • Queuing theory deals with the analysis of lines where customers wait to receive a service:

    Q : Use the NW corner rule to find an

      (a) Use the NW corner rule to find an initial BFS, then solve using the transportation simplex method. Indicate your optimal objective function value. (b) Suppose we increase s1 from 15 to 16, and d3 from 10 to 11. S

  • Q : Problem on Model Checking Part (a).

    Part (a). Draw a state diagram for a car with the following state variables: D indicating whether the car is in drive; B indicating the brake pedal is depressed; G indicating the gas pedal is depressed; and M indicating whether the car is moving. (For example, the sta

  • Q : Sample z test and Sample t test A

    A random sample X1, X2, …, Xn is from a normal population with mean µ and variance σ2. If σ is unknown, give a 95% confidence interval of the population mean, and interpret it. Discuss the major diff