--%>

Simplified demonstration of Littles Law

Simplified demonstration of Little’s Law:

1874_little law.jpg



• a(t): the number of arrivals up to time t
• d(t): the number of departures up to t
• l(t) = a(t) –d(t) ≥ 0, the number of units in the system at time
• H(t): the area enclosed between the curves a(t) & d(t). represents the accumulated time in system during that interval measured in request-seconds (or request-minutes, etc.)

Simplified demonstration:

L ≡ H/T

R ≡ H/C

X ≡ C/T

H/T ≡ (C/T) (H/C);

L = X/R

   Related Questions in Basic Statistics

  • Q : Derived quantities in Queuing system

    Derived quantities in Queuing system: • λ = A / T, Arrival rate • X = C / T, Throughput or completion rate • ρ =U= B / T, Utilization &bu

  • Q : MANOVA and Reflection Activity

    Activity 10:   MANOVA and Reflection   4Comparison of Multiple Outcome Variables This activity introduces you to a very common technique - MANOVA. MANOVA is simply an extension of an ANOV

  • Q : Cumulative Frequency and Relative

    Explain differences between Cumulative Frequency and Relative Frequency?

  • Q : FIN512 Entrepreneurial Finance Chapter

      Chapter 6: Discussion Question: #4 p. 223  It is usually easier to forecast sales for a seasoned firm contrast to an early-stage venture because an early-stage venture has limited access to bank credit lines, sho

  • Q : Define SPIN simulation modes SPIN: •

    SPIN: • SPIN generates C program that is the model checker – The pan verifier • Process Analyzer – Run the pan executable to do the model check

  • Q : Sample z test and Sample t test A

    A random sample X1, X2, …, Xn is from a normal population with mean µ and variance σ2. If σ is unknown, give a 95% confidence interval of the population mean, and interpret it. Discuss the major diff

  • Q : Creating Grouped Frequency Distribution

    Creating Grouped Frequency Distribution: A) At first we have to determine the biggest and smallest values. B) Then we have to Calculate the Range = Maximum - Minimum C) Choose the number of classes wished for. This is generally between 5 to 20. D) Find out the class width by dividing the range b

  • Q : Explain Queuing theory Queuing theory :

    Queuing theory: • Queuing theory deals with the analysis of lines where customers wait to receive a service:

    Q : Decision Variables Determine Decision

    Determine Decision Variables: Let X1 be the number of private homes to be inspectedLet X2 be the number of office buildings to be inspect

  • Q : Regression Analysis 1. A planning

    1. A planning official in the Texas Department of Community Affairs, which works in the office next to you, has a problem. He has been handed a data set from his boss that includes the costs involved in developing local land use plans for communities wi