--%>

Set Theory & Model of a Boolean Algebra

II. Prove that Set Theory is a Model of a Boolean Algebra

The three Boolean operations of Set Theory are the three set operations of union (U), intersection (upside down U), and complement ~.  Addition is set union, multiplication is set intersection, and the complement of a set is the set all elements that are in the universal set, but not in the set.  The universal set is the set of which all other sets are subsets and the empty set is the set, which has no elements and which therefore all other sets contain.  For purposes of this question, let S denote the universal set and Ø the empty set. (Just state the Boolean Algebra equalities of sets below, the proofs are considered self-evident, we do not require Venn diagrams to be written to establish their validity.)

1. State the commutative law of addition: _________________________________________

2. State the associative law of addition: _____________________________________________

3. State the law that says Ø is an additive identity __________________________________

4. State the commutative law of multiplication: ____________________________________

5. State the associative law of multiplication: _______________________________________

6. State the law that says S is a multiplicative identity _____________________________

7. State the distributive law of multiplication: ______________________________________

8. State the distributive law of addition: _____________________________________________

9.   State the Boolean Algebra property x  +  ˜ x  = 1 in terms of a set A.

10. State the Boolean Algebra property x  •  ˜ x  = 0 in terms of a set A.

The above ten properties are necessary and sufficient conditions to prove that Set Theory is indeed a model of a Boolean algebra.

11. In Set Theory the difference of two sets, A and B is defined as:

A - B = { s | s  belongs to A and s does not belong to B } 

Define the difference of two sets A and B, using the basic operations of set theory: union, intersection, and complement.

A - B =            

12. In terms of an Abstract Boolean Algebra, for two elements x and y define the difference, x - y using the basic operations  +,  •, and ~ of  Boolean Algebra, using the definition from Set Theory as your guide.

x - y  

13.  In Boolean Algebra rewrite the expression  x - (y + z) using only the basics operations of ~ , • and  +.

x - ( y + z ) = 

14.  Using the results of Boolean Algebra in problem 13 above, rewrite  the set theoretic expression of A - ( B U C ) using only the basics operations of set theory : union, intersection, and complement.

A - ( B U C ) = 

   Related Questions in Mathematics

  • Q : Law of iterated expectations for

     Prove the law of iterated expectations for continuous random variables. 2. Prove that the bounds in Chebyshev's theorem cannot be improved upon. I.e., provide a distribution that satisfies the bounds exactly for k ≥1, show that it satisfies the bounds exactly, and draw its PDF. T

  • Q : Profit-loss based problems A leather

    A leather wholesaler supplies leather to shoe companies. The manufacturing quantity requirements of leather differ depending upon the amount of leather ordered by the shoe companies to him. Due to the volatility in orders, he is unable to precisely predict what will b

  • Q : Probability and Stochastic assignment

    Introduction to Probability and Stochastic Assignment 1: 1. Consider an experiment in which one of three boxes containing microchips is chosen at random and a microchip is randomly selected from the box.

  • Q : Breakfast program if the average is

    if the average is 0.27 and we have $500 how much break fastest will we serve by 2 weeks

  • Q : Containee problem For queries Q 1 and Q

    For queries Q1 and Q2, we say Q1 is containedin Q2, denoted Q1 C Q2, iff Q1(D) C Q2

  • Q : What is the definition of a group Group

    Group: Let G be a set. When we say that o is a binary operation on G, we mean that o is a function from GxG into G. Informally, o takes pairs of elements of G as input and produces single elements of G as output. Examples are the operations + and x of

  • Q : Formal Logic It's a problem set, they

    It's a problem set, they are attached. it's related to Sider's book which is "Logic to philosophy" I attached the book too. I need it on feb22 but feb23 still work

  • Q : State Measuring complexity Measuring

    Measuring complexity: Many algorithms have an integer n, or two integers m and n, as input - e.g., addition, multiplication, exponentiation, factorisation and primality testing. When we want to describe or analyse the `easiness' or `hardness' of the a

  • Q : Problem on Maple (a) Solve the

    (a) Solve the following  by: (i) First reducing the system of first order differentiat equations to a second order differential equation. (ii) Decoupling the following linear system of equa

  • Q : Calculus I need it within 4 hours. Due

    I need it within 4 hours. Due time March 15, 2014. 3PM Pacific Time. (Los Angeles, CA)