--%>

Set Theory & Model of a Boolean Algebra

II. Prove that Set Theory is a Model of a Boolean Algebra

The three Boolean operations of Set Theory are the three set operations of union (U), intersection (upside down U), and complement ~.  Addition is set union, multiplication is set intersection, and the complement of a set is the set all elements that are in the universal set, but not in the set.  The universal set is the set of which all other sets are subsets and the empty set is the set, which has no elements and which therefore all other sets contain.  For purposes of this question, let S denote the universal set and Ø the empty set. (Just state the Boolean Algebra equalities of sets below, the proofs are considered self-evident, we do not require Venn diagrams to be written to establish their validity.)

1. State the commutative law of addition: _________________________________________

2. State the associative law of addition: _____________________________________________

3. State the law that says Ø is an additive identity __________________________________

4. State the commutative law of multiplication: ____________________________________

5. State the associative law of multiplication: _______________________________________

6. State the law that says S is a multiplicative identity _____________________________

7. State the distributive law of multiplication: ______________________________________

8. State the distributive law of addition: _____________________________________________

9.   State the Boolean Algebra property x  +  ˜ x  = 1 in terms of a set A.

10. State the Boolean Algebra property x  •  ˜ x  = 0 in terms of a set A.

The above ten properties are necessary and sufficient conditions to prove that Set Theory is indeed a model of a Boolean algebra.

11. In Set Theory the difference of two sets, A and B is defined as:

A - B = { s | s  belongs to A and s does not belong to B } 

Define the difference of two sets A and B, using the basic operations of set theory: union, intersection, and complement.

A - B =            

12. In terms of an Abstract Boolean Algebra, for two elements x and y define the difference, x - y using the basic operations  +,  •, and ~ of  Boolean Algebra, using the definition from Set Theory as your guide.

x - y  

13.  In Boolean Algebra rewrite the expression  x - (y + z) using only the basics operations of ~ , • and  +.

x - ( y + z ) = 

14.  Using the results of Boolean Algebra in problem 13 above, rewrite  the set theoretic expression of A - ( B U C ) using only the basics operations of set theory : union, intersection, and complement.

A - ( B U C ) = 

   Related Questions in Mathematics

  • Q : Law of iterated expectations for

     Prove the law of iterated expectations for continuous random variables. 2. Prove that the bounds in Chebyshev's theorem cannot be improved upon. I.e., provide a distribution that satisfies the bounds exactly for k ≥1, show that it satisfies the bounds exactly, and draw its PDF. T

  • Q : Problem on Fermats method A public key

    A public key for RSA is published as n = 17947 and a = 3. (i) Use Fermat’s method to factor n. (ii) Check that this defines a valid system and find the private key X.

    Q : Explain the work and model proposed by

    Explain the work and model proposed by Richardson.

  • Q : Bolzano-Weierstrass property The

    The Bolzano-Weierstrass property does not hold in C[0, ¶] for the infinite set A ={sinnx:n<N} : A is infinite; Show that has no “ limit points”.

  • Q : Problem on budgeted cash collections

    XYZ Company collects 20% of a month's sales in the month of sale, 70% in the month following sale, and 5% in the second month following sale. The remainder is not collectible. Budgeted sales for the subsequent four months are:     

  • Q : Formal Logic It's a problem set, they

    It's a problem set, they are attached. it's related to Sider's book which is "Logic to philosophy" I attached the book too. I need it on feb22 but feb23 still work

  • Q : First-order formulas over the

    Consider the unary relational symbols P and L, and the binary relational symbol On, where P(a) and I(a) encode that a is apoint and a (sraight) line in the 2-dimensional space, respectively, while On(a,b) encodes  that a is a point, b is a line, and o lies on b.

  • Q : Formal logic It's a problem set, they

    It's a problem set, they are attached. it's related to Sider's book which is "Logic to philosophy" I attached the book too. I need it on feb22 but feb23 still work

  • Q : Explain trading of call options Explain

    Explain trading of call options.

  • Q : How do it? integral e^(-t)*e^(tz) t

    integral e^(-t)*e^(tz) t between 0 and infinity for Re(z)<1