--%>

Set Theory & Model of a Boolean Algebra

II. Prove that Set Theory is a Model of a Boolean Algebra

The three Boolean operations of Set Theory are the three set operations of union (U), intersection (upside down U), and complement ~.  Addition is set union, multiplication is set intersection, and the complement of a set is the set all elements that are in the universal set, but not in the set.  The universal set is the set of which all other sets are subsets and the empty set is the set, which has no elements and which therefore all other sets contain.  For purposes of this question, let S denote the universal set and Ø the empty set. (Just state the Boolean Algebra equalities of sets below, the proofs are considered self-evident, we do not require Venn diagrams to be written to establish their validity.)

1. State the commutative law of addition: _________________________________________

2. State the associative law of addition: _____________________________________________

3. State the law that says Ø is an additive identity __________________________________

4. State the commutative law of multiplication: ____________________________________

5. State the associative law of multiplication: _______________________________________

6. State the law that says S is a multiplicative identity _____________________________

7. State the distributive law of multiplication: ______________________________________

8. State the distributive law of addition: _____________________________________________

9.   State the Boolean Algebra property x  +  ˜ x  = 1 in terms of a set A.

10. State the Boolean Algebra property x  •  ˜ x  = 0 in terms of a set A.

The above ten properties are necessary and sufficient conditions to prove that Set Theory is indeed a model of a Boolean algebra.

11. In Set Theory the difference of two sets, A and B is defined as:

A - B = { s | s  belongs to A and s does not belong to B } 

Define the difference of two sets A and B, using the basic operations of set theory: union, intersection, and complement.

A - B =            

12. In terms of an Abstract Boolean Algebra, for two elements x and y define the difference, x - y using the basic operations  +,  •, and ~ of  Boolean Algebra, using the definition from Set Theory as your guide.

x - y  

13.  In Boolean Algebra rewrite the expression  x - (y + z) using only the basics operations of ~ , • and  +.

x - ( y + z ) = 

14.  Using the results of Boolean Algebra in problem 13 above, rewrite  the set theoretic expression of A - ( B U C ) using only the basics operations of set theory : union, intersection, and complement.

A - ( B U C ) = 

   Related Questions in Mathematics

  • Q : Problem on Nash equilibrium In a

    In a project, employee and boss are working altogether. The employee can be sincere or insincere, and the Boss can either reward or penalize. The employee gets no benefit for being sincere but gets utility for being insincere (30), for getting rewarded (10) and for be

  • Q : Explain Black–Scholes model Explain

    Explain Black–Scholes model.

  • Q : Nonlinear integer programming problem

    Explain Nonlinear integer programming problem with an example ?

  • Q : Law of iterated expectations for

     Prove the law of iterated expectations for continuous random variables. 2. Prove that the bounds in Chebyshev's theorem cannot be improved upon. I.e., provide a distribution that satisfies the bounds exactly for k ≥1, show that it satisfies the bounds exactly, and draw its PDF. T

  • Q : Probability assignments 1. Smith keeps

    1. Smith keeps track of poor work. Often on afternoon it is 5%. If he checks 300 of 7500 instruments what is probability he will find less than 20substandard? 2. Realtors estimate that 23% of homes purchased in 2004 were considered investment properties. If a sample of 800 homes sold in 2

  • Q : Define terms Terms : Terms are defined

    Terms: Terms are defined inductively by the following clauses.               (i) Every individual variable and every individual constant is a term. (Such a term is called atom

  • Q : Linear programming model of a Cabinet

    A cabinet company produces cabinets used in mobile and motor homes. Cabinets produced for motor homes are smaller and made from less expensive materials than those for mobile homes. The home office in Dayton Ohio has just distributed to its individual manufacturing ce

  • Q : Formal logic2 It's a problem set, they

    It's a problem set, they are attached. it's related to Sider's book which is "Logic to philosophy" I attached the book too. I need it on feb22 but feb23 still work

  • Q : Bolzano-Weierstrass property The

    The Bolzano-Weierstrass property does not hold in C[0, ¶] for the infinite set A ={sinnx:n<N} : A is infinite; Show that has no “ limit points”.

  • Q : Abstract Boolean Algebra I. Boolean

    I. Boolean Algebra Define an abstract Boolean Algebra, B,  as follows:  The three operations are:  +   ( x + y addition) ( x y multiplic