--%>

Sedimentation and Velocity

The first method begins with a well defined layer, or boundary, of solution near the center of rotation and tracks the movement of this layer to the outside of the cell as a function of time. Such a method is termed a sedimentary velocity experiment.


A particle of mass m at a distance x from center of rotation experiences a force given by 

ƒcentrif = m'xω2

Where w is the angular velocity in radiation per second m' is the distance effective mass of the solute particle, i.e. the actual mass corrected for the new effect of the solvent.

To express this buoyancy effect, we first recognize that v the specific volume of the solute, is the mass of 1 g of the solute. The volume of m g of solute is mv, and the mass of this volume of solvent is m of the solute is m - mvp = mj (1 - vp). We now can rewrite equation as:

Centrif = m (1 - vp) xω
2

Equating these two force expressions leads us to the constant drif velocity. A rearrangement of the equality:

M (1 - v) xω2 = 6∏r? dx/dt

Equating these two force expressions leads that collect the dynamic variables gives:

Dx/dt/xω2 = m (1 - vp)/6∏r?


The collection of dynamic terms on the left side of equation describes the results of sedimentation velocity experiments. This collection (dx/dt) xw2 can be looked on as the velocity with which the solute moves per unit centrifugal force. The sedimentation coefficient S is introduced as:

S = dx/dt/xω2

The experimentation results can therefore be tabulated as values of S. the value of S for many macromolecules is of the order of 10-13 has therefore been introduced, called a Svedberg, in honor of T. Svedberg, who did much of the early work with the ultracentrifuge.

Molar mass: s = dx/dt/xω2 = m )1 - vp)/ 6∏r?

Rearrangement and multiplication by Avogadro's number give:

M = Nm = 6∏r?NS/ 1- vp

Now the troublesome terms involving ? and r can be replaced by their effective values appear in the measurable values D of equation, to give the desired result:

M = RTS/ D (1 - vp)

Thus measurements of the substances of the sedimentation and diffusion coefficients and of the solvent and solute allow the deduction of the molar mass for a few macromolecules. The necessary data for such calculations for a few macromolecular materials are included.

A particular advantage of the sedimentation velocity technique is that a macromolecular solution containing two or more types of macromolecules is separated according to the molecular masses of the components. The type of sedimentation diagrams obtained for a system containing a number of macromolecular species.

Density gradient: better resolution can be obtained by allowing the sedimentation to occur in a density gradient solution, prepared, for example, by filling the centrifuge tube layer by layer with solutions of decreasing sucrose concentration. As the macromolecular substance or mixture of substances is centrifuged, it moves through a solvent with gradually increasing density. The result is more stable macromolecular zones and a better "spectrum" of the components. The technique is thus a modification of the sedimentation velocity method.

   Related Questions in Chemistry

  • Q : Problem based on molarity Select the

    Select the right answer of the question. If 18 gm of glucose (C6H12O6) is present in 1000 gm of an aqueous solution of glucose, it is said to be: (a)1 molal (b)1.1 molal (c)0.5 molal (d)0.1 molal

  • Q : Q what is the basicity of primary

    what is the basicity of primary secondary and tertiary amines in chlorobenzene

  • Q : Reactivity of allyl and benzyl halides

    why allyl halide and haloarenes are more reactive than alkyl halide towards nucleophilic substitution

  • Q : Explain the molecular mass with respect

    During the formation of polymers, different macromolecules have different degree of polymerisation i.e. they have varied chain lengths. Thus, the molecular masses of the individual macromolecules in a particular sample of the polymer are different. Hence, an average value of the molecular mass is

  • Q : Problem on decomposition reaction

    Nitrogen tetroxide (melting point: -11.2°C, normal boiling point 21.15°C) decomposes into nitrogen dioxide according to the following reaction: N2O4(g) ↔ 2 NO2(g)<

  • Q : Problem based on lowering in vapour

    Help me to solve this problem. An aqueous solution of glucose was prepared by dissolving 18 g of glucose in 90 g of water. The relative lowering in vapour pressure is: (a) 0.02 (b)1 (c) 20 (d)180

  • Q : Volume of solution containing solute

    What volume of solution contains 0.1 mole of the solute: (a) 100ml (b) 125ml  (c) 500ml (d) 62.5ml Choose the right answer from above.

  • Q : DNA Organic Explain DNA organic in

    Explain DNA organic in brief?

  • Q : Dipole moment of chlorooctane

    Illustrate the dipole moment of chlorooctane?

  • Q : Vapour pressure Vapour pressure of

    Vapour pressure of methanol in water Give me answer of this question. An aqueous solution of methanol in water has vapour pressure: (a) Equal to that of water (b) Equal to that of methanol (c) More than that of water (d) Less than that of water