--%>

Sedimentation and Velocity

The first method begins with a well defined layer, or boundary, of solution near the center of rotation and tracks the movement of this layer to the outside of the cell as a function of time. Such a method is termed a sedimentary velocity experiment.


A particle of mass m at a distance x from center of rotation experiences a force given by 

ƒcentrif = m'xω2

Where w is the angular velocity in radiation per second m' is the distance effective mass of the solute particle, i.e. the actual mass corrected for the new effect of the solvent.

To express this buoyancy effect, we first recognize that v the specific volume of the solute, is the mass of 1 g of the solute. The volume of m g of solute is mv, and the mass of this volume of solvent is m of the solute is m - mvp = mj (1 - vp). We now can rewrite equation as:

Centrif = m (1 - vp) xω
2

Equating these two force expressions leads us to the constant drif velocity. A rearrangement of the equality:

M (1 - v) xω2 = 6∏r? dx/dt

Equating these two force expressions leads that collect the dynamic variables gives:

Dx/dt/xω2 = m (1 - vp)/6∏r?


The collection of dynamic terms on the left side of equation describes the results of sedimentation velocity experiments. This collection (dx/dt) xw2 can be looked on as the velocity with which the solute moves per unit centrifugal force. The sedimentation coefficient S is introduced as:

S = dx/dt/xω2

The experimentation results can therefore be tabulated as values of S. the value of S for many macromolecules is of the order of 10-13 has therefore been introduced, called a Svedberg, in honor of T. Svedberg, who did much of the early work with the ultracentrifuge.

Molar mass: s = dx/dt/xω2 = m )1 - vp)/ 6∏r?

Rearrangement and multiplication by Avogadro's number give:

M = Nm = 6∏r?NS/ 1- vp

Now the troublesome terms involving ? and r can be replaced by their effective values appear in the measurable values D of equation, to give the desired result:

M = RTS/ D (1 - vp)

Thus measurements of the substances of the sedimentation and diffusion coefficients and of the solvent and solute allow the deduction of the molar mass for a few macromolecules. The necessary data for such calculations for a few macromolecular materials are included.

A particular advantage of the sedimentation velocity technique is that a macromolecular solution containing two or more types of macromolecules is separated according to the molecular masses of the components. The type of sedimentation diagrams obtained for a system containing a number of macromolecular species.

Density gradient: better resolution can be obtained by allowing the sedimentation to occur in a density gradient solution, prepared, for example, by filling the centrifuge tube layer by layer with solutions of decreasing sucrose concentration. As the macromolecular substance or mixture of substances is centrifuged, it moves through a solvent with gradually increasing density. The result is more stable macromolecular zones and a better "spectrum" of the components. The technique is thus a modification of the sedimentation velocity method.

   Related Questions in Chemistry

  • Q : Normality of sulphuric acid Help me to

    Help me to go through this problem. Normality of sulphuric acid is: (a) 2N (b) 4N (c) N/2 (d) N/4

  • Q : P- block why pentahalids are more

    why pentahalids are more covalent than tetrahalids

  • Q : Theory of three dimensional motion

    Partition function; that the translational energy of 1 mol of molecules is 3/2 RT will come as no surprise. But the calculation of this result further illustrates the use of quantized states and the partition function to obtain macroscopic properties. The partition fu

  • Q : Molal concentration Select the right

    Select the right answer of the question. If one mole of any substance is present in of solvent, then: (a) It shows molar concentration (b) It shows molal concentration (c) It shows normality (d) It shows strength.

  • Q : Molarity of Sulfuric acid Choose the

    Choose the right answer from following. What is the molarity of H2SO4 solution, that has a density 1.84 gm/cc at 35c and contains solute 98% by weight: (a) 4.18 M (b) 8.14 M (c)18.4 M (d)18 M

  • Q : What do you mean by the term enzymes

    What do you mean by the term enzymes? Briefly illustrate it.

  • Q : Solution and colligative properties

    what is molarity of a solution of hcl which contains 49% by weight of solute and whose specific gravity is 1.41

  • Q : Explain Ionic Bond with examples. The

    The bonding in ionic molecules can be described with a coulombic attractive term.For some diatomic molecules we take quite a different approach from that used in preceding sections to describe the bonding. Ionic bonds are interpreted in terms of the coulom

  • Q : Concentration of an aqueous solution

    Give me answer of this question. The concentration of an aqueous solution of 0.01M CH3OH solution is very nearly equal to which of the following : (a) 0.01%CH3OH (b) 0.1%CH3OH (c) xCH3OH= 0.01 (d) 0.99MH2O (

  • Q : Dipole attractions for london dispersion

    Illustrate how are dipole attractions London dispersion forces and hydrogen bonding similar?