--%>

Sedimentation and Velocity

The first method begins with a well defined layer, or boundary, of solution near the center of rotation and tracks the movement of this layer to the outside of the cell as a function of time. Such a method is termed a sedimentary velocity experiment.


A particle of mass m at a distance x from center of rotation experiences a force given by 

ƒcentrif = m'xω2

Where w is the angular velocity in radiation per second m' is the distance effective mass of the solute particle, i.e. the actual mass corrected for the new effect of the solvent.

To express this buoyancy effect, we first recognize that v the specific volume of the solute, is the mass of 1 g of the solute. The volume of m g of solute is mv, and the mass of this volume of solvent is m of the solute is m - mvp = mj (1 - vp). We now can rewrite equation as:

Centrif = m (1 - vp) xω
2

Equating these two force expressions leads us to the constant drif velocity. A rearrangement of the equality:

M (1 - v) xω2 = 6∏r? dx/dt

Equating these two force expressions leads that collect the dynamic variables gives:

Dx/dt/xω2 = m (1 - vp)/6∏r?


The collection of dynamic terms on the left side of equation describes the results of sedimentation velocity experiments. This collection (dx/dt) xw2 can be looked on as the velocity with which the solute moves per unit centrifugal force. The sedimentation coefficient S is introduced as:

S = dx/dt/xω2

The experimentation results can therefore be tabulated as values of S. the value of S for many macromolecules is of the order of 10-13 has therefore been introduced, called a Svedberg, in honor of T. Svedberg, who did much of the early work with the ultracentrifuge.

Molar mass: s = dx/dt/xω2 = m )1 - vp)/ 6∏r?

Rearrangement and multiplication by Avogadro's number give:

M = Nm = 6∏r?NS/ 1- vp

Now the troublesome terms involving ? and r can be replaced by their effective values appear in the measurable values D of equation, to give the desired result:

M = RTS/ D (1 - vp)

Thus measurements of the substances of the sedimentation and diffusion coefficients and of the solvent and solute allow the deduction of the molar mass for a few macromolecules. The necessary data for such calculations for a few macromolecular materials are included.

A particular advantage of the sedimentation velocity technique is that a macromolecular solution containing two or more types of macromolecules is separated according to the molecular masses of the components. The type of sedimentation diagrams obtained for a system containing a number of macromolecular species.

Density gradient: better resolution can be obtained by allowing the sedimentation to occur in a density gradient solution, prepared, for example, by filling the centrifuge tube layer by layer with solutions of decreasing sucrose concentration. As the macromolecular substance or mixture of substances is centrifuged, it moves through a solvent with gradually increasing density. The result is more stable macromolecular zones and a better "spectrum" of the components. The technique is thus a modification of the sedimentation velocity method.

   Related Questions in Chemistry

  • Q : What are Ethers and its types? Ethers

    Ethers are the compounds with general formula or CnH2n+

  • Q : Determining maximum Osmotic pressure

    Which of the following would have the maximum osmotic pressure (assume that all salts are 90% dissociated): (a) Decimolar aluminium sulphate (b) Decimolar barium chloride (c) Decimolar sodium sulphate (d) A solution obtained by mix

  • Q : Finding Molarity of final mixture Can

    Can someone help me in finding out the right answer. 25ml of 3.0 MHNO3 are mixed with 75ml of 4.0 MHNO3. If the volumes are adding up the molarnity of the final mixture would be: (a) 3.25M (b) 4.0M (c) 3.75M (d) 3.50M

  • Q : Group IV Cations Chromium(III)

    Chromium(III) hydroxide is highly insoluble in distilled water but dissolves readily in either acidic or basic solution. Briefly explain why the compound can dissolve in acidic or in basic but not in neutral solution. Write appropriate equations to support your answer.

  • Q : Importance of organic chemistry

    Describe the importance of organic chemistry?

  • Q : Molarity 20mol of hcl solution requires

    20mol of hcl solution requires 19.85ml of 0.01 M NAOH solution for complete neutralisation. the molarity of hcl solution

  • Q : Molarity of HCl solution 20 ml of HCL

    20 ml of HCL solution needs 19.85 ml of 0.01M NaOH solution for complete neutralization. Morality of the HCL solution is:  (i) 0.0099 (ii) 0.099 (iii) 0.99 (iv) 9.9 Choose the right answer from above.

  • Q : Homework Silicon has three naturally

    Silicon has three naturally occurring isotopes. 28Si, mass = 27.976927; 29Si, mass = 28.976495; 30Si, mass = 29.973770 and 3.10% abundance. What is the abundance of 28Si?

  • Q : Mole 2.0gram of dolomite is heated to a

    2.0gram of dolomite is heated to a constant weight of 1.0g. Calculate the total volume of CO2 produced at STP by this reation

  • Q : Net charge of a non-ionized atom

    Describe the net charge of a non-ionized atom?