--%>

Schrodinger equation with particle in a box problem.

Three dimensional applications of the Schrodinger equation are introduced by the particle-in-a-box problem.

So far only a one-dimensional problem has been solved by application of the Schrodinger equation. Now the allowed energies and the probability functions for a particle that is free to move in three dimensions are deduced. A molecule of a gas enclosed in a cubic container provides a specific example that is dealt with in the section after the general procedure has been developed.

For any three-dimensional problem, the potential energy is, general, a function of three coordinates. For a cubic potential box, the Cartesian coordinates are convenient. The differential equation that must be solved is now the Schrodinger equation in three dimensions.

1310_Particle in a box.png 

For a "cubic box," the potential function can be expressed in terms of separate x, y, and z components,
98_Particle in a box1.png 

Each of the potential function components for a "particle-in-a-box" is like the one-dimensional potential for a "particle-on-a-line".

For three-dimensional systems, the solution function ψ depends on the three coordinates necessary to locate a point in space. It is often profitable to try to separate such systems into parts, with each part involving only one coordinate. On the basis we try the substitution

ψ (x, y, z) = Ø(x)Ø(y)Ø(z)

Substitution of (2) from (1) gives

1350_Particle in a box2.png 

Division by Ø(x)Ø(y)Ø(z) gives

1180_Particle in a box3.png 

For the equation to be satisfied for all values of x, y and z, each term on the left must equal a component of ε, and we can write

ε = εx + εy + εz

The Schrodinger equation can then be broken down into three identical equations of the type

1394_Particle in a box4.png 

Or

578_Particle in a box6.png 

These equations are identical to that written for one-dimensional problem. The solution to the three-dimensional cubic-box problem is therefore

ψ =  Ø(x)Ø(y)Ø(z)

With

1809_Particle in a box7.png

   Related Questions in Chemistry

  • Q : Unit of mole fraction Provide solution

    Provide solution of this question. Unit of mole fraction is: (a) Moles/litre (b) Moles/litre2 (c) Moles-litre (d) Dimensionless

  • Q : Real vapour pressure Choose the right

    Choose the right answer from following. The pressure under which liquid and vapour can coexist at equilibrium is called the : (a) Limiting vapour pressure (b) Real vapour pressure (c) Normal vapour pressure (d) Saturated vapour pressure

  • Q : Mole fraction of solute The mole

    The mole fraction of the solute in 1 molal aqueous solution is: (a) 0.027 (b) 0.036 (c) 0.018 (d) 0.009What is the correct answer.

  • Q : Non-ideal Gases Fugacity The fugacity

    The fugacity is a pressure like quantity that is used to treat the free energy of nonideal gases.Now we begin the steps that allow us to relate free energy changes to the equilibrium constant of real, nonideal gases. The thermodynamic reaction 

  • Q : DNA Organic Explain DNA organic in

    Explain DNA organic in brief?

  • Q : Determining concentration in ppm A 500

    A 500 gm tooth paste sample has 0.2g fluoride concentration. Determine the concentration of F in terms of ppm level: (a) 250 (b) 200 (c) 400 (d) 1000Answer: (c) F-ions in ppm = (0.2/500) x 106 = 400

  • Q : Basicity order order of decreasing

    order of decreasing basicity of urea and its substituents

  • Q : Crystals of covalent compounds Crystals

    Crystals of the covalent compounds always contain:(i) Atoms as their structural units  (ii) Molecules as structural units  (iii) Ions held altogether by electrostatic forces (iv) High melting pointsAnswer: (i)

  • Q : What are homogenous catalyst? Give few

    When a catalyst mixes homogeneously with the reactants and forms a single phase, the catalyst is said to be homogeneous and this type of catalysis is called homogeneous catalysis. Some more examples of homogeneous catalysis are:    SO2

  • Q : Describe properties of carboxylic acids.

    1. Physical state: the first three aliphatic acids are colourless liquids with pungent smell. The next six are oily liquids with an odour of rancid butter while the higher members are colourless, odourless waxy solids. Benzoic acid is referred to