--%>

Schrodinger equation with particle in a box problem.

Three dimensional applications of the Schrodinger equation are introduced by the particle-in-a-box problem.

So far only a one-dimensional problem has been solved by application of the Schrodinger equation. Now the allowed energies and the probability functions for a particle that is free to move in three dimensions are deduced. A molecule of a gas enclosed in a cubic container provides a specific example that is dealt with in the section after the general procedure has been developed.

For any three-dimensional problem, the potential energy is, general, a function of three coordinates. For a cubic potential box, the Cartesian coordinates are convenient. The differential equation that must be solved is now the Schrodinger equation in three dimensions.

1310_Particle in a box.png 

For a "cubic box," the potential function can be expressed in terms of separate x, y, and z components,
98_Particle in a box1.png 

Each of the potential function components for a "particle-in-a-box" is like the one-dimensional potential for a "particle-on-a-line".

For three-dimensional systems, the solution function ψ depends on the three coordinates necessary to locate a point in space. It is often profitable to try to separate such systems into parts, with each part involving only one coordinate. On the basis we try the substitution

ψ (x, y, z) = Ø(x)Ø(y)Ø(z)

Substitution of (2) from (1) gives

1350_Particle in a box2.png 

Division by Ø(x)Ø(y)Ø(z) gives

1180_Particle in a box3.png 

For the equation to be satisfied for all values of x, y and z, each term on the left must equal a component of ε, and we can write

ε = εx + εy + εz

The Schrodinger equation can then be broken down into three identical equations of the type

1394_Particle in a box4.png 

Or

578_Particle in a box6.png 

These equations are identical to that written for one-dimensional problem. The solution to the three-dimensional cubic-box problem is therefore

ψ =  Ø(x)Ø(y)Ø(z)

With

1809_Particle in a box7.png

   Related Questions in Chemistry

  • Q : Lowering of vapour pressure Help me to

    Help me to go through this problem. Lowering of vapour pressure is highest for: (a) urea (b) 0.1 M glucose (c) 0.1M MgSo4 (d) 0.1M BaCl2

  • Q : Electrons present in a benzene How

    How many electrons are present in a benzene?

  • Q : Problem on vapour pressure Choose the

    Choose the right answer from following. If P and P are the vapour pressure of a solvent and its solution respectively N1 and N2 and are the mole fractions of the solvent and solute respectively, then correct relation is: (a) P= PoN1 (b) P= Po N2 (c)P0= N2 (d)

  • Q : Question based on lowest vapour pressure

    Give me answer of this question. Among the following substances the lowest vapour pressure is exerted by: (a) Water (b) Mercury (c) Kerosene (d) Rectified spirit

  • Q : Entropy is entropy on moleculare basis

    is entropy on moleculare basis relates to the tras.,vib.,and rotational motions?

  • Q : Law of multiple proportions and Law of

    Describe the difference between law of multiple proportions and law of definite proportions?

  • Q : Henry law question Answer the following

    Answer the following qustion. The definition “The mass of a gas dissolved in a particular mass of a solvent at any temperature is proportional to the pressure of gas over the solvent” is: (i) Dalton’s Law of Parti

  • Q : What are electromotive force in

    The main objective of this particular aspect of Physical Chemistry is to examine the relation between free energies and the mechanical energy of electromotive force of electrochemical cells. The ionic components of aqueous solutions can be treated on the basis of the

  • Q : Decision about dipole moment is present

    How can you decide if there is a dipole moment or not?

  • Q : Question based on lowering of vapour

    Choose the right answer from following. The relative lowering of vapour pressure produced by dissolving 71.5 g of a substance in 1000 g of water is 0.00713. The molecular weight of the substance will be:  (a) 18.0 (b) 342 (c) 60 (d) 180