--%>

Sample Questions in Graphical Solution Procedure

Solved problems in Graphical Solution Procedure, sample assignments and homework

Questions: Minimize Z = 10x1 + 4x2

Subject to

3x1 + 2x2 ≥ 60

            7x1 + 2x2 ≥ 84

            3x1 +6x2 ≥ 72

x1 ≥ 0 , x2 ≥ 0

 

Answer

The first constraint 3x1 + 2x2 ≥ 60, can be written in form of equation

3x1 + 2x2 = 60

Place x1 =0, then x2 = 30

Place x2 =0, then x1 = 20

Then the coordinates are (0, 30) and (20, 0)

 

The second constraint 7x1 + 2x2 ≥ 84, can be written in form of equation

7x1 + 2x2 = 84

Place x1 =0, then x2 = 42

Place x2 =0, then x1 = 12

The coordinates then are (0, 42) and (12, 0)

 

The third constraint 3x1 +6x2 ≥ 72, can be written in form of equation

3x1 +6x2 = 72

Place x1 =0, then x2 = 12

Place x2 =0, then x1 = 24

Thus, coordinates are (0, 12) and (24, 0)

 

The graphical presentation is

 

 1485_Graphical Solution Procedure Sample Assignment.png 

 

The corner positions of feasible region are A, B, C and D. Thus the coordinates for the corner points are

A (0, 42)

B (6, 21) (Solve the two equations 7x1 + 2x2 = 84 and 3x1 + 2x2 = 60 to obtain the coordinates)

C (18, 3) Solve the two equations 3x1 +6x2 = 72 and 3x1 + 2x2 = 60 to obtain the coordinates)

D (24, 0)

 

We are given that Min Z = 10x1 + 4x2

At A (0, 42)

Z = 10(0) + 4(42) = 168

 

At B (6, 21)

Z = 10(6) + 4(21) = 144

 

At C (18, 3)

Z = 10(18) + 4(3) = 192

 

At D (24, 0)

Z = 10(24) + 4(0) = 240

 

The minimum value is calculated at the point B. Consequently Min Z = 144 and x1 = 6, x2 = 21

   Related Questions in Basic Statistics

  • Q : Probability how can i calculate

    how can i calculate cumulative probabilities of survival

  • Q : Designing a system What are the

    What are the questions that comes into mind when designing a system?

  • Q : Compute two sample standard deviations

    Consider the following data for two independent random samples taken from two normal populations. Sample 1 14 26 20 16 14 18 Sample 2 18 16 8 12 16 14 a) Com

  • Q : What is your conclusion The following

    The following data were collected on the number of emergency ambulance calls for an urban county and a rural county in Florida. Is County type independent of the day of the week in receiving the emergency ambulance calls? Use α = 0.005. What is your conclusion? Day of the Week<

  • Q : Derived quantities in Queuing system

    Derived quantities in Queuing system: • λ = A / T, Arrival rate • X = C / T, Throughput or completion rate • ρ =U= B / T, Utilization &bu

  • Q : What is Interactive Response Time Law

    Interactive Response Time Law: • R = (L/X) - Z• Applies to closed systems.• Z is the think time. The time elapsed since&nb

  • Q : Use the NW corner rule to find an

      (a) Use the NW corner rule to find an initial BFS, then solve using the transportation simplex method. Indicate your optimal objective function value. (b) Suppose we increase s1 from 15 to 16, and d3 from 10 to 11. S

  • Q : Statistics for Management Assignment

    Q : Quantities in a queuing system

    Quantities in a queuing system: A: Count of

  • Q : OIL I need to product when oil will

    I need to product when oil will finish time (by years) for 6 countries if the keep their production (per day) in the same level. So, the 6 countries have fixed reserves and production 1. statistics for Bahrain Crude oil reserves (million barrels) = 124.6 be careful in million Crude oil producti