--%>

Sample Questions in Graphical Solution Procedure

Solved problems in Graphical Solution Procedure, sample assignments and homework

Questions: Minimize Z = 10x1 + 4x2

Subject to

3x1 + 2x2 ≥ 60

            7x1 + 2x2 ≥ 84

            3x1 +6x2 ≥ 72

x1 ≥ 0 , x2 ≥ 0

 

Answer

The first constraint 3x1 + 2x2 ≥ 60, can be written in form of equation

3x1 + 2x2 = 60

Place x1 =0, then x2 = 30

Place x2 =0, then x1 = 20

Then the coordinates are (0, 30) and (20, 0)

 

The second constraint 7x1 + 2x2 ≥ 84, can be written in form of equation

7x1 + 2x2 = 84

Place x1 =0, then x2 = 42

Place x2 =0, then x1 = 12

The coordinates then are (0, 42) and (12, 0)

 

The third constraint 3x1 +6x2 ≥ 72, can be written in form of equation

3x1 +6x2 = 72

Place x1 =0, then x2 = 12

Place x2 =0, then x1 = 24

Thus, coordinates are (0, 12) and (24, 0)

 

The graphical presentation is

 

 1485_Graphical Solution Procedure Sample Assignment.png 

 

The corner positions of feasible region are A, B, C and D. Thus the coordinates for the corner points are

A (0, 42)

B (6, 21) (Solve the two equations 7x1 + 2x2 = 84 and 3x1 + 2x2 = 60 to obtain the coordinates)

C (18, 3) Solve the two equations 3x1 +6x2 = 72 and 3x1 + 2x2 = 60 to obtain the coordinates)

D (24, 0)

 

We are given that Min Z = 10x1 + 4x2

At A (0, 42)

Z = 10(0) + 4(42) = 168

 

At B (6, 21)

Z = 10(6) + 4(21) = 144

 

At C (18, 3)

Z = 10(18) + 4(3) = 192

 

At D (24, 0)

Z = 10(24) + 4(0) = 240

 

The minimum value is calculated at the point B. Consequently Min Z = 144 and x1 = 6, x2 = 21

   Related Questions in Basic Statistics

  • Q : FIN512 Entrepreneurial Finance Chapter

      Chapter 6: Discussion Question: #4 p. 223  It is usually easier to forecast sales for a seasoned firm contrast to an early-stage venture because an early-stage venture has limited access to bank credit lines, sho

  • Q : What is Interactive Response Time Law

    Interactive Response Time Law: • R = (L/X) - Z• Applies to closed systems.• Z is the think time. The time elapsed since&nb

  • Q : Hypothesis homework A sample of 9 days

    A sample of 9 days over the past six months showed that a clinic treated the following numbers of patients: 24, 26, 21, 17, 16, 23, 27, 18, and 25. If the number of patients seen per day is normally distributed, would an analysis of these sample data provide evidence that the variance in the numbe

  • Q : State Littles Law Little’s Law : • L =

    Little’s Law: • L = λR = XR • Lq = λW = XW • Steady state system • Little’s Law holds as long as customers are not destroyed or&nbs

  • Q : Simplified demonstration of Littles Law

    Simplified demonstration of Little’s Law:

    Q : Compare the test results The grade

    The grade point averages of 61 students who completed a college course in financial accounting have a standard deviation of .790. The grade point averages of 17 students who dropped out of the same course have a standard deviation of .940. Do the data indicate a

  • Q : Creating Grouped Frequency Distribution

    Creating Grouped Frequency Distribution: A) At first we have to determine the biggest and smallest values. B) Then we have to Calculate the Range = Maximum - Minimum C) Choose the number of classes wished for. This is generally between 5 to 20. D) Find out the class width by dividing the range b

  • Q : Creating Grouped Frequency Distribution

    Creating Grouped Frequency Distribution: A) At first we have to determine the biggest and smallest values. B) Then we have to Calculate the Range = Maximum - Minimum C) Choose the number of classes wished for. This is generally between 5 to 20. D) Find out the class width by dividing the range b

  • Q : Derived quantities in Queuing system

    Derived quantities in Queuing system: • λ = A / T, Arrival rate • X = C / T, Throughput or completion rate • ρ =U= B / T, Utilization &bu

  • Q : How to solve statistics assignment in

    How to solve staistics assignment, i need some help in solving stats assignment on AVOVA based problems. Could you help in solving this?