--%>

Report on Radiobiology for Travel Space

I have a problem in wirting a report on Radiobiology for Travel Space.  Can someone provide me a complete report on the above topic.

E

Expert

Verified

Abstract:

There is an unknown energy that spreads throughout the universe out of the Earth’s protective atmosphere. This energy consists of high energetic particles transmitted in the form of waves. This energy transmitted in a form of waves or rays or particles is called Radiation. The waves comprised of energetic protons and heavy ions and a secondary radiation produced in shielding or tissue through nuclear reactions. The broad spectrum of radiation encountered in space goes from extreme ultraviolet radiation, X-rays and high energy particles as electrons, neutrons, protons and heavy ions up to iron and even higher charges.

Many biology experiments have been made during these space emissions to date, in ionizing the radiation encountered in low Earth orbit and the biological effects have been studied during the experiments. It has been found that there were issues of radiation from medical perspective. The effects of the radiation on the space travelers or astronauts have caused much research probes into the matter. Though this radiation is less damaging inside the Earth’s atmosphere, the effect it causes on the crew has been very alarming.

The paper discusses about various life evolutions and introduction to the study of effects of gravitational force and the effects of cosmic/solar radiations on human crew during space flights in first chapter. The second chapter includes the biological effects the cosmic radiation has on humans in detail. The third chapter describes the various types of radiations in space and their effects. The fourth chapter deals with the biological effects on DNA including direct and indirect damages. The fifth chapter represents the repair mechanisms needed.

Life on Earth:

Over billions of years, life on planet Earth evolved from primitive cells into at least 10 million of different species, which represent the existing biological diversity. Life evolved from simple cell organisms called prokaryotes (which do not have any nucleus) to eukaryotes (which have a nucleus). In the last few decades or so, varieties of novel organisms have been isolated, which include hyperthermophiles that can survive high temperatures like 110oC and barophiles that can survive pressures found in deepest trenches of the oceans and anaerobes that can accept iron, manganese, or even uranium as electron acceptors. Similarly many other organisms have been found that survive low nutrient or low temperatures environments that do not allow growth.

To know more....

   Related Questions in Physics

  • Q : Instrument used to measure the volume

    Name the instrument which is used to measure the volume? Explain in short?

  • Q : Explain Cosmological constant

    Cosmological constant (Lambda): The constant mentioned to the Einstein field equation, proposed to admit the static cosmological solutions. At the time the present philosophical view was steady-state model of the space, where the Universe has been aro

  • Q : What is Dulong-Petit law Dulong-Petit

    Dulong-Petit law (P. Dulong, A.T. Petit; 1819): The molar heat capacity is around equivalent to the three times the ideal gas constant: C = 3 R

  • Q : Define Gauss law Gauss' law (K.F.

    Gauss' law (K.F. Gauss): The electric flux via a closed surface is proportional to the arithmetical sum of electric charges contained in that closed surface; in its differential form, div E = rho,

  • Q : What is Wave-particle duality

    Wave-particle duality: The principle of quantum mechanics that entails that light (and, certainly, all other subatomic particles) at times act similar to a wave, and sometime act similar to a particle, based on the experiment you are executing. For ex

  • Q : What is Hooke law Hooke's law (R.

    Hooke's law (R. Hooke): The stress exerted to any solid is proportional to the strain it generates within the elastic limit for that solid. The constant of that proportionality is the Young modulus of elasticity for that material.

  • Q : Problem on dot equivalent Obtain the

    Obtain the “dot” equivalent for the circuit shown below and use it to find the equivalent inductive reactance. 2141_dot.jpg

    Q : Define Rydberg constant Rydberg

    Rydberg constant (Rydberg): The constant that governs the relationship of the spectral line features of an atom via the Rydberg formula. For hydrogen, it is around 1.097 x 107 m-1.

  • Q : Define Brackett series Brackett series

    Brackett series (Brackett) - The series (or sequence) that explains the emission spectrum of hydrogen whenever the electron is jumping to fourth orbital. All of the lines are in the infrared segment of the spectrum.

  • Q : Define Lenzs law Lenz's law (H.F. Lenz;

    Lenz's law (H.F. Lenz; 1835): The induced electric current always flows in such a direction that it resists the change generating it.