Reducible Representations

The number of times each irreducible representation occurs in a reducible representation can be calculated.

Consider the C2point group as described or Appendix C. you can see that (1) sum of the squares of the entries for each symmetry species is equal to 4, the number of operations, of the group; (2) the sum of the term-by-term products over all the operations for any two different symmetry species is zero. This example illustrates a general feature: the rows of point group tables' act as the components of orthogonal vectors do.

The vector-like property can be expressed mathematically. Let I refer to one row of the character table and j to another row. Let R represent any column of a character table. Thus R is a symmetry operation of any of the classes of symmetry operations. Let nR be the number of operations in the class. (This number is equal to the values in the first row of the character table.) You can verify for any of the character table of appendix C that

Σall classes nR
651_Reducible Representation.png i(R) 651_Reducible Representation.png j(R) = {g   i = j} {0   i ≠ j} 

Where r is the number of symmetry operations in the group. The number g is known as the order of the group.

Example: verify that the rows, which give the characters of the different symmetry species, of the C3v character table of Appendix C, obey the relations.

Solution: the number of symmetry operations in the group, i.e. the order of the group, is obtained from the headings of the character table. Thus we obtain the value of g by adding 1 for the Esymmetry element, for the C3 element, and 3 for the σv element, giving a total of 6.

First we test the i = j relation. We have

For A1: 1(1)(1) + 2(1)(1) + 3(-1)(-1) = 1 + 2 + 3 = 6

For A2: 1(1)(1) + 2(1)(1) + 3(-1)(-1) = 1 + 2 + 3 = 6

For E: 1(2)(2) + 2(-1)(-1) + 3(0)(0) = 4 + 2 + 0 = 6

In a similar way we can test the various i ≠ j possibilities. We have

For A1 and A2: 1(1)(1) + 2(1) (1) + 3(1)(-1) = 1 + 2 - 3 = 0

For A1 and E: 1(1)(2) + 2(1)(-1) + 3(1)(0) = 2 - 2 + 0 = 0

For A2 and E: 1(1)(2) + 2(1)(-1) + 3(-1)(0) = 2 - 2 + 0 = 0

The similarity of the characters of the various symmetry species to orthogonal vectors will lead us to the very useful relation. This equation enables us to calculate, for example, the number of molecular orbitals or the number of molecular vibrations that have the symmetry of the various symmetry species for the point group to which  the molecule belongs. You might want to skip ahead to and become familiar with its use, rather than work through the development of this expression.

The idea that the characters ( 651_Reducible Representation.png R) of any reducible representation are made up of the characters of some of the irreducible representation can be expressed by

651_Reducible Representation.png (R) = Σi aj 651_Reducible Representation.png i(R), where for the class containing the Rth symmetry operation, 651_Reducible Representation.png (R) represents the character for a reducible representation and 651_Reducible Representation.png (R) represents the character for the jth irreducible representation, that in the jth row of the character table, occurs in the irreducible representation, or each row of the character table, occurs in a reducible representation. We focus on the jth row, and we attempt to find the value of ai. First we multiply both sides of equation by nR 651_Reducible Representation.png i(R), and then we sum over all classes of symmetry operations. We obtain

Σall classes nR 651_Reducible Representation.png i(R) 651_Reducible Representation.png j(R) = Σall classes [nR 651_Reducible Representation.png i(R) Σaj 651_Reducible Representation.png j(R)]

According to the right side will give zero contributions except when j = i. then the value of the right side is aj times g, where is the order of the group. Thus

Σall classes nR 651_Reducible Representation.png i(R) 651_Reducible Representation.png j(R) = ai g

From above equation we write the important and useful relation

a= 1/g Σall classes nR 651_Reducible Representation.png i(R) 651_Reducible Representation.png j(R)

   Related Questions in Chemistry

  • Q : Quastion of finding vapour pressure

    Vapour pressure of CCl425Degree C at is 143mm of Hg0.5gm of a non-volatile solute (mol. wt. = 65) is dissolved in 100ml CCl4 .Find the vapour pressure of the solution (Density of CCl4 = = 1.58g /cm2): (a)141.43mm (b)

  • Q : Thermodynamics I) Sulphur dioxide (SO2)

    I) Sulphur dioxide (SO2) with a volumetric flow rate 5000cm3/s at 1 bar and 1000C is mixed with a second SO2 stream flowing at 2500cm3/s at 2 bar and 200C. The process occurs at steady state. You may assume ideal gas behaviour. For SO2 take the heat capacity at constant pressure to be CP/R = 3.267

  • Q : Molality of Sulfuric acid Choose the

    Choose the right answer from following. The molality of 90% H2SO4 solution is: [density=1.8 gm/ml]  (a)1.8 (b) 48.4 (c) 9.18 (d) 94.6

  • Q : Explain Vapour Pressure Composition A

    A pressure composition diagram for a liquid vapor system can be used to show the composition of the liquid and equilibrium vapor.Vapor equilibrium data are useful in the study of distillations. It is of value to have diagrams showing not only the vapor pre

  • Q : What is Henry law constant and its

    1. The units of Henry Law constant are same as those of pressure, i.e. torr or h bar. 2. Different gases have dissimilar values of Henry law constant. The values of KH for some gases in water are given in tabl

  • Q : Biodegradable polymers what are the

    what are the examples of biodegradable polymers

  • Q : Problem on Neutralization What weight

    What weight of hydrated oxalic acid should be added for complete neutralisation of 100 ml of 0.2N - NaOH solution? (a) 0.45 g  (b)0.90 g  (c) 1.08 g  (d) 1.26 g      Answer

  • Q : Explain Phase Rule The relation between

    The relation between the number of phases, components and the degrees of freedom is known as the phase rule. One constituent systems: the identification of an area on a P-versus-T with one phase of a component system illustrates the two degrees of freedom that

  • Q : Concentration of an aqueous solution

    Give me answer of this question. The concentration of an aqueous solution of 0.01M CH3OH solution is very nearly equal to which of the following : (a) 0.01%CH3OH (b) 0.1%CH3OH (c) xCH3OH= 0.01 (d) 0.99MH2O (

  • Q : What are the various types of drugs

    Drugs are broadly classified into following types depending on the purpose for which they are used. 1. Antipyretics

©TutorsGlobe All rights reserved 2022-2023.