--%>

Reducible Representations

The number of times each irreducible representation occurs in a reducible representation can be calculated.

Consider the C2point group as described or Appendix C. you can see that (1) sum of the squares of the entries for each symmetry species is equal to 4, the number of operations, of the group; (2) the sum of the term-by-term products over all the operations for any two different symmetry species is zero. This example illustrates a general feature: the rows of point group tables' act as the components of orthogonal vectors do.

The vector-like property can be expressed mathematically. Let I refer to one row of the character table and j to another row. Let R represent any column of a character table. Thus R is a symmetry operation of any of the classes of symmetry operations. Let nR be the number of operations in the class. (This number is equal to the values in the first row of the character table.) You can verify for any of the character table of appendix C that

Σall classes nR
651_Reducible Representation.png i(R) 651_Reducible Representation.png j(R) = {g   i = j} {0   i ≠ j} 

Where r is the number of symmetry operations in the group. The number g is known as the order of the group.

Example: verify that the rows, which give the characters of the different symmetry species, of the C3v character table of Appendix C, obey the relations.

Solution: the number of symmetry operations in the group, i.e. the order of the group, is obtained from the headings of the character table. Thus we obtain the value of g by adding 1 for the Esymmetry element, for the C3 element, and 3 for the σv element, giving a total of 6.

First we test the i = j relation. We have

For A1: 1(1)(1) + 2(1)(1) + 3(-1)(-1) = 1 + 2 + 3 = 6

For A2: 1(1)(1) + 2(1)(1) + 3(-1)(-1) = 1 + 2 + 3 = 6

For E: 1(2)(2) + 2(-1)(-1) + 3(0)(0) = 4 + 2 + 0 = 6

In a similar way we can test the various i ≠ j possibilities. We have

For A1 and A2: 1(1)(1) + 2(1) (1) + 3(1)(-1) = 1 + 2 - 3 = 0

For A1 and E: 1(1)(2) + 2(1)(-1) + 3(1)(0) = 2 - 2 + 0 = 0

For A2 and E: 1(1)(2) + 2(1)(-1) + 3(-1)(0) = 2 - 2 + 0 = 0

The similarity of the characters of the various symmetry species to orthogonal vectors will lead us to the very useful relation. This equation enables us to calculate, for example, the number of molecular orbitals or the number of molecular vibrations that have the symmetry of the various symmetry species for the point group to which  the molecule belongs. You might want to skip ahead to and become familiar with its use, rather than work through the development of this expression.

The idea that the characters ( 651_Reducible Representation.png R) of any reducible representation are made up of the characters of some of the irreducible representation can be expressed by

651_Reducible Representation.png (R) = Σi aj 651_Reducible Representation.png i(R), where for the class containing the Rth symmetry operation, 651_Reducible Representation.png (R) represents the character for a reducible representation and 651_Reducible Representation.png (R) represents the character for the jth irreducible representation, that in the jth row of the character table, occurs in the irreducible representation, or each row of the character table, occurs in a reducible representation. We focus on the jth row, and we attempt to find the value of ai. First we multiply both sides of equation by nR 651_Reducible Representation.png i(R), and then we sum over all classes of symmetry operations. We obtain

Σall classes nR 651_Reducible Representation.png i(R) 651_Reducible Representation.png j(R) = Σall classes [nR 651_Reducible Representation.png i(R) Σaj 651_Reducible Representation.png j(R)]

According to the right side will give zero contributions except when j = i. then the value of the right side is aj times g, where is the order of the group. Thus

Σall classes nR 651_Reducible Representation.png i(R) 651_Reducible Representation.png j(R) = ai g

From above equation we write the important and useful relation

a= 1/g Σall classes nR 651_Reducible Representation.png i(R) 651_Reducible Representation.png j(R)

   Related Questions in Chemistry

  • Q : Describe Enzyme Catalyzed reactions

    Many enzyme catalyzed reactions obeys a complex rate equation that can be written as the total quantity of enzyme and the whole amount of substrate in the reaction system. Many rate equations that are more complex than first and se

  • Q : Application of colligative properties

    Choose the right answer from following. Colligative properties are used for the determination of: (a) Molar Mass (b) Equivalent weight (c) Arrangement of molecules (d) Melting point and boiling point (d) Both (a) and (b)  

  • Q : What are Vander Waal's Radii? Vander

    Vander Waal's radii can be assigned to the atoms of molecules on the basis of the closeness of approach of these atoms in crystalline substances. Diffraction studies of crystals give information about hoe molecules can approach each other and can pack

  • Q : Describe properties of carboxylic acids.

    1. Physical state: the first three aliphatic acids are colourless liquids with pungent smell. The next six are oily liquids with an odour of rancid butter while the higher members are colourless, odourless waxy solids. Benzoic acid is referred to

  • Q : Vapour pressure Vapour pressure of

    Vapour pressure of methanol in water Give me answer of this question. An aqueous solution of methanol in water has vapour pressure: (a) Equal to that of water (b) Equal to that of methanol (c) More than that of water (d) Less than that of water

  • Q : Particles of quartz Particles of quartz

    Particles of quartz are packed by:(i) Electrical attraction forces  (ii) Vander Waal's forces  (iii) Covalent bond forces  (iv) Strong electrostatic force of attraction Answer: (iii)

  • Q : Dipole moment of chlorooctane

    Illustrate the dipole moment of chlorooctane?

  • Q : Latent heat of vaporization Normal

    Normal butane (C4H10) is stored as a compressed liquid at 90°C and 1400 kPa. In order to use the butane in a low-pressure gas-phase process, it is throttled to 150 kPa and passed through a vaporizer. The butane emerges from the vaporizer as a

  • Q : Neutralization of sodium hydroxide How

    How much of NaOH is needed to neutralise 1500 cm3 of 0.1N HCl (given = At. wt. of Na =23): (i) 4 g  (ii) 6 g (iii) 40 g  (iv) 60 g

  • Q : Define tripod and its use Illustrate a

    Illustrate a tripod? And how it’s used?