--%>

Reducible Representations

The number of times each irreducible representation occurs in a reducible representation can be calculated.

Consider the C2point group as described or Appendix C. you can see that (1) sum of the squares of the entries for each symmetry species is equal to 4, the number of operations, of the group; (2) the sum of the term-by-term products over all the operations for any two different symmetry species is zero. This example illustrates a general feature: the rows of point group tables' act as the components of orthogonal vectors do.

The vector-like property can be expressed mathematically. Let I refer to one row of the character table and j to another row. Let R represent any column of a character table. Thus R is a symmetry operation of any of the classes of symmetry operations. Let nR be the number of operations in the class. (This number is equal to the values in the first row of the character table.) You can verify for any of the character table of appendix C that

Σall classes nR
651_Reducible Representation.png i(R) 651_Reducible Representation.png j(R) = {g   i = j} {0   i ≠ j} 

Where r is the number of symmetry operations in the group. The number g is known as the order of the group.

Example: verify that the rows, which give the characters of the different symmetry species, of the C3v character table of Appendix C, obey the relations.

Solution: the number of symmetry operations in the group, i.e. the order of the group, is obtained from the headings of the character table. Thus we obtain the value of g by adding 1 for the Esymmetry element, for the C3 element, and 3 for the σv element, giving a total of 6.

First we test the i = j relation. We have

For A1: 1(1)(1) + 2(1)(1) + 3(-1)(-1) = 1 + 2 + 3 = 6

For A2: 1(1)(1) + 2(1)(1) + 3(-1)(-1) = 1 + 2 + 3 = 6

For E: 1(2)(2) + 2(-1)(-1) + 3(0)(0) = 4 + 2 + 0 = 6

In a similar way we can test the various i ≠ j possibilities. We have

For A1 and A2: 1(1)(1) + 2(1) (1) + 3(1)(-1) = 1 + 2 - 3 = 0

For A1 and E: 1(1)(2) + 2(1)(-1) + 3(1)(0) = 2 - 2 + 0 = 0

For A2 and E: 1(1)(2) + 2(1)(-1) + 3(-1)(0) = 2 - 2 + 0 = 0

The similarity of the characters of the various symmetry species to orthogonal vectors will lead us to the very useful relation. This equation enables us to calculate, for example, the number of molecular orbitals or the number of molecular vibrations that have the symmetry of the various symmetry species for the point group to which  the molecule belongs. You might want to skip ahead to and become familiar with its use, rather than work through the development of this expression.

The idea that the characters ( 651_Reducible Representation.png R) of any reducible representation are made up of the characters of some of the irreducible representation can be expressed by

651_Reducible Representation.png (R) = Σi aj 651_Reducible Representation.png i(R), where for the class containing the Rth symmetry operation, 651_Reducible Representation.png (R) represents the character for a reducible representation and 651_Reducible Representation.png (R) represents the character for the jth irreducible representation, that in the jth row of the character table, occurs in the irreducible representation, or each row of the character table, occurs in a reducible representation. We focus on the jth row, and we attempt to find the value of ai. First we multiply both sides of equation by nR 651_Reducible Representation.png i(R), and then we sum over all classes of symmetry operations. We obtain

Σall classes nR 651_Reducible Representation.png i(R) 651_Reducible Representation.png j(R) = Σall classes [nR 651_Reducible Representation.png i(R) Σaj 651_Reducible Representation.png j(R)]

According to the right side will give zero contributions except when j = i. then the value of the right side is aj times g, where is the order of the group. Thus

Σall classes nR 651_Reducible Representation.png i(R) 651_Reducible Representation.png j(R) = ai g

From above equation we write the important and useful relation

a= 1/g Σall classes nR 651_Reducible Representation.png i(R) 651_Reducible Representation.png j(R)

   Related Questions in Chemistry

  • Q : Linde liquefaction process Liquefied

    Liquefied natural gas (LNG) is produced using a Linde liquefaction process from pure methane gas at 3 bar and 280 K (conditions at point 1 in figure below). A three-stage compressor with interceding is used to compress the methane to 100 bar (point 2). The first stage

  • Q : Coordination number of a cation The

    The coordination number of a cation engaging a tetrahedral hole is: (a) 6  (b) 8  (c) 12  (d) 4 Answer: (d) The co-ordination number of a cation occupying a tetrahedral hole is 4.

  • Q : What is heat capacity and how to

    The temperature reliance of internal energy and enthalpy depends on the heat capacities at constant volume and constant pressure. The internal energy and enthalpy of chemical systems and the energy changes that accompany chemical reactions depend on the

  • Q : Problem on moles of solution The number

    The number of moles of a solute in its solution is 20 and total no. of moles are 80. The mole fraction of solute wil be: (a) 2.5 (b) 0.25 (c) 1 (d) 0.75

  • Q : Relative lowering of vapour pressure

    Which of the following solutions will have a lower vapour pressure and why? a) A 5% aqueous solution of cane sugar. b) A 5% aqueous solution of urea.

  • Q : Pressure Phase Diagrams The occurrence

    The occurrence of different phases of a one component system can be shown on a pressure temperature. The phases present in a one line system at various temperatures can be conveniently presented on a P- versus-T diagram. An example is pro

  • Q : Units of Measurement Unit of

    Unit of measurement- These are also some systems for units:      (1) C.G.S.

  • Q : What is ortho effect? Orthosubstituted

    Orthosubstituted anilines are generally weaker bases than aniline irrespective of the electron releasing or electron withdrawing nature of the substituent. This is known as ortho effect and may probably be due to combined electronic and steric factors.The overall basic strength of ort

  • Q : How to calculate solutions ionic

    Transference numbers and molar conductors can be used to calculate ionic mobilities. This tables under is giving the transference numbers for positive ions at 25 degree C and the values obtained by extrapolation to infinite dilution:

    Q : Molecular Diameters The excluded volume

    The excluded volume b, introduced by vander Wall's as an empirical correction term, can be related to the size gas molecules. To do so, we assume the excluded volume is the result of the pairwise coming together of molecules. This assumption is justified when b values