--%>

Random variables

Random variables with zero correlation are not necessarily independent. Give a simple example.

 

 

E

Expert

Verified

Let X be a normally-distributed random variable with

  Mean zero.  Let Y = X^2.  Obviously, X and Y are not independent: knowing X, gives the value of Y.

  The covariance of X and Y is  Cov(X,Y) = E(XY) - E(X)E(Y) = E(X^3) - 0*E(Y) = E(X^3)              = 0,

  because the distribution of X is symmetric around zero.  correlation r(X,Y) = Cov(X,Y)/Sqrt[Var(X)Var(Y)] = 0,   the random  variables are not independent, but correlation is zero.

   Related Questions in Advanced Statistics

  • Q : Problem on Poisson distribution The

    The number of trucks coming to a certain warehouse each day follows the Poisson distribution with λ= 8. The warehouse can handle a maximum of 12 trucks a day. What is the probability that on a given day one or more trucks have to be sent away? Round the answer

  • Q : Problem on Chebyshevs theorem 1. Prove

    1. Prove that the law of iterated expectations for continuous random variables.2. Prove that the bounds in Chebyshev's theorem cannot be improved upon. I.e., provide a distribution which satisfies the bounds exactly for k ≥1, show that it satisfies the

  • Q : Probability on expected number of days

    It doesn't rain often in Tucson. Yet, when it does, I want to be prepared. I have 2 umbrellas at home and 1 umbrella in my office. Before I leave my house, I check if it is raining. If it is, I take one of the umbrellas with me to work, where I would leave it. When I

  • Q : Non-parametric test what is the

    what is the appropriate non-parametric counterpart for the independent sample t test?

  • Q : MANOVA and Reflection Activity 10:

    Activity 10: MANOVA and Reflection 4Comparison of Multiple Outcome Variables This activity introduces you to a very common technique - MANOVA. MANOVA is simply an extension of an ANOVA and allows for the comparison of multiple outcome variables (again, a very common situation in research a

  • Q : Binomial distribution 1) A Discrete

    1) A Discrete random variable can be described as Binomial distribution if is satisfies four conditions, Briefly discuss each of these conditions2) A student does not study for a multiple choice examination and decides to guess the correct answers, If the

  • Q : Use the law of iterated expectation to

    Suppose we have a stick of length L. We break it once at some point X _

    Q : Random variables Random variables with

    Random variables with zero correlation are not necessarily independent. Give a simple example.    

  • Q : Analytical Report Hi I WOULD LIKE TO

    Hi I WOULD LIKE TO KNOW IF YOU CAN HELP ME TO DO THE ASSIGNMENT IN HEALTH STATISTICS THANKS

  • Q : Problem related to playing cards Cards

    Cards are randomly drawn one at the time and with replacement from a standard deck of 52 playing cards. (a) Find the probability of getting the fourth spades on the 10th draw. (b) Determine the