--%>

Random variables

Random variables with zero correlation are not necessarily independent. Give a simple example.

 

 

E

Expert

Verified

Let X be a normally-distributed random variable with

  Mean zero.  Let Y = X^2.  Obviously, X and Y are not independent: knowing X, gives the value of Y.

  The covariance of X and Y is  Cov(X,Y) = E(XY) - E(X)E(Y) = E(X^3) - 0*E(Y) = E(X^3)              = 0,

  because the distribution of X is symmetric around zero.  correlation r(X,Y) = Cov(X,Y)/Sqrt[Var(X)Var(Y)] = 0,   the random  variables are not independent, but correlation is zero.

   Related Questions in Advanced Statistics

  • Q : Probability Distributions and Data

    1. A popular resort hotel has 300 rooms and is usually fully booked. About 4% of the time a reservation is canceled before 6:00 p.m. deadline with no penalty. What is the probability that at least 280 rooms will be occupied? Use binomial distribution to find the exact value and the normal approxi

  • Q : Statistics A nurse practitioner working

    A nurse practitioner working in a dermatology clinic is studying the efficacy of tretinoin in treating women’s post partum abdominal stretch marks. From a sample of 15 women, the mean reduction of stretch mark score is -0.33 with a sample standard deviation of 2.46. Describe what happens to the c

  • Q : Probability of signaling Quality

    Quality control: when the output of a production process is stable at an acceptable standard, it is said to be "in control?. Suppose that a production process has been in control for some time and that the proportion of defectives has been 0.5. as a means of monitorin

  • Q : Non-parametric test what is the

    what is the appropriate non-parametric counterpart for the independent sample t test?

  • Q : Variation what are the advantages and

    what are the advantages and disadvantages of seasonal variation

  • Q : Analyse the statistics of the data

    Assigment Question Select any two manufacturing companies and formulate the cost and revenue functions of the companies. analyse the statistics of the data and then sketch the functions and determine their breakeven points. (Note: You are required to interview the production and sales manag

  • Q : Problem on Chebyshevs theorem 1. Prove

    1. Prove that the law of iterated expectations for continuous random variables.2. Prove that the bounds in Chebyshev's theorem cannot be improved upon. I.e., provide a distribution which satisfies the bounds exactly for k ≥1, show that it satisfies the

  • Q : Random variables Random variables with

    Random variables with zero correlation are not necessarily independent. Give a simple example.    

  • Q : Problem on income probability Kramer

    Kramer spends all of his income  $270  on two products, soup (S) and on golf balls (G). He always bought 2 golf balls for every 1 cup of soup he consumes. He acquires no additional utility from the other cup of soup unless he as well gets 2 more golf balls a

  • Q : Null hypothesis In testing the null

    In testing the null hypothesis H0: P=0.6 vs the alternative H1 : P < 0.6 for a binomial model b(n,p), the rejection region of a test has the structure X ≤ c, where X is the number of successes in n trials. For each of the following tests, d