--%>

Random variables

Random variables with zero correlation are not necessarily independent. Give a simple example.

 

 

E

Expert

Verified

Let X be a normally-distributed random variable with

  Mean zero.  Let Y = X^2.  Obviously, X and Y are not independent: knowing X, gives the value of Y.

  The covariance of X and Y is  Cov(X,Y) = E(XY) - E(X)E(Y) = E(X^3) - 0*E(Y) = E(X^3)              = 0,

  because the distribution of X is symmetric around zero.  correlation r(X,Y) = Cov(X,Y)/Sqrt[Var(X)Var(Y)] = 0,   the random  variables are not independent, but correlation is zero.

   Related Questions in Advanced Statistics

  • Q : True and False Statement Discuss the

    Discuss the following statements and explain why they are true or false: a)      Increasing the number of predictor variables will never decrease the R2 b)      Multicollinearity affects the int

  • Q : Discrete and continuous data

    Distinguish between discrete and continuous data in brief.

  • Q : Describe how random sampling serves

    Explain sampling bias and describe how random sampling serves to avoid bias in the process of data collection.    

  • Q : Null hypothesis In testing the null

    In testing the null hypothesis H0: P=0.6 vs the alternative H1 : P < 0.6 for a binomial model b(n,p), the rejection region of a test has the structure X ≤ c, where X is the number of successes in n trials. For each of the following tests, d

  • Q : Probability and Statistics

    Instructions: Do your work on this question and answer sheet. Please print or write legibly, and, as always, be complete but succinct. Record your answer and your supporting work in the designated space. Explain your method of solution and be sure to label clearly any

  • Q : Analyse the statistics of the data

    Assigment Question Select any two manufacturing companies and formulate the cost and revenue functions of the companies. analyse the statistics of the data and then sketch the functions and determine their breakeven points. (Note: You are required to interview the production and sales manag

  • Q : MANOVA and Reflection Activity 10:

    Activity 10: MANOVA and Reflection 4Comparison of Multiple Outcome Variables This activity introduces you to a very common technique - MANOVA. MANOVA is simply an extension of an ANOVA and allows for the comparison of multiple outcome variables (again, a very common situation in research a

  • Q : Probability of signaling Quality

    Quality control: when the output of a production process is stable at an acceptable standard, it is said to be "in control?. Suppose that a production process has been in control for some time and that the proportion of defectives has been 0.5. as a means of monitorin

  • Q : Problem on Chebyshevs theorem 1. Prove

    1. Prove that the law of iterated expectations for continuous random variables.2. Prove that the bounds in Chebyshev's theorem cannot be improved upon. I.e., provide a distribution which satisfies the bounds exactly for k ≥1, show that it satisfies the

  • Q : Random variables Random variables with

    Random variables with zero correlation are not necessarily independent. Give a simple example.