--%>

Random variables

Random variables with zero correlation are not necessarily independent. Give a simple example.

 

 

E

Expert

Verified

Let X be a normally-distributed random variable with

  Mean zero.  Let Y = X^2.  Obviously, X and Y are not independent: knowing X, gives the value of Y.

  The covariance of X and Y is  Cov(X,Y) = E(XY) - E(X)E(Y) = E(X^3) - 0*E(Y) = E(X^3)              = 0,

  because the distribution of X is symmetric around zero.  correlation r(X,Y) = Cov(X,Y)/Sqrt[Var(X)Var(Y)] = 0,   the random  variables are not independent, but correlation is zero.

   Related Questions in Advanced Statistics

  • Q : True and False Statement Discuss the

    Discuss the following statements and explain why they are true or false: a)      Increasing the number of predictor variables will never decrease the R2 b)      Multicollinearity affects the int

  • Q : Problem on income probability Kramer

    Kramer spends all of his income  $270  on two products, soup (S) and on golf balls (G). He always bought 2 golf balls for every 1 cup of soup he consumes. He acquires no additional utility from the other cup of soup unless he as well gets 2 more golf balls a

  • Q : MANOVA and Reflection Activity 10:

    Activity 10: MANOVA and Reflection 4Comparison of Multiple Outcome Variables This activity introduces you to a very common technique - MANOVA. MANOVA is simply an extension of an ANOVA and allows for the comparison of multiple outcome variables (again, a very common situation in research a

  • Q : Analytical Report Hi I WOULD LIKE TO

    Hi I WOULD LIKE TO KNOW IF YOU CAN HELP ME TO DO THE ASSIGNMENT IN HEALTH STATISTICS THANKS

  • Q : Problem on consumers marginal utility

    Consider a consumer with probability p of becoming sick.  Let Is be the consumer’s income if he becomes sick, and let Ins be his income if he does not become sick, with Is < Ins. Suppo

  • Q : Problem on Chebyshevs theorem 1. Prove

    1. Prove that the law of iterated expectations for continuous random variables.2. Prove that the bounds in Chebyshev's theorem cannot be improved upon. I.e., provide a distribution which satisfies the bounds exactly for k ≥1, show that it satisfies the

  • Q : Non-parametric test what is the

    what is the appropriate non-parametric counterpart for the independent sample t test?

  • Q : Components of time series Name and

    Name and elaborate the four components of time series in brief.

  • Q : Problem on utility funtion probability

    Suppose that your utility, U, is a function only of wealth, Y, and that U(Y) is as drawn below. In this graph, note that U(Y) increases linearly between points a and b.  Suppose further that you do not know whether or not you

  • Q : Analysing the Probabilities 1. In the

    1. In the waning seconds of Superbowl XLVII, the Baltimore Ravens elected to take a safety rather than punt the ball. A sports statistician wishes to analyze the effect this decision had on the probability of winning the game. (a) Which two of the following probabilities would most help t