--%>

Random variables

Random variables with zero correlation are not necessarily independent. Give a simple example.

 

 

E

Expert

Verified

Let X be a normally-distributed random variable with

  Mean zero.  Let Y = X^2.  Obviously, X and Y are not independent: knowing X, gives the value of Y.

  The covariance of X and Y is  Cov(X,Y) = E(XY) - E(X)E(Y) = E(X^3) - 0*E(Y) = E(X^3)              = 0,

  because the distribution of X is symmetric around zero.  correlation r(X,Y) = Cov(X,Y)/Sqrt[Var(X)Var(Y)] = 0,   the random  variables are not independent, but correlation is zero.

   Related Questions in Advanced Statistics

  • Q : Correlation Define the term Correlation

    Define the term Correlation and describe Correlation formula in brief.

  • Q : Conclusion using p-value and critical

    A sample of 9 days over the past six months showed that a clinic treated the following numbers of patients: 24, 26, 21, 17, 16, 23, 27, 18, and 25. If the number of patients seen per day is normally distributed, would an analysis of these sample data provide evid

  • Q : How you would use randomization in

    The design of instrument controls affects how easily people can use them. An investigator used 25 students who were right-handed to determine whether right-handed subjects preferred right-handed threaded knobs. He had two machines that differed only in that one had a

  • Q : Probability of winning game Monte Carlo

    Monte Carlo Simulation for Determining Probabilities 1. Determining the probability of winning at the game of craps is difficult to solve analytically. We will assume you are playing the `Pass Line.'  So here is how the game is played: The shooter rolls a pair of

  • Q : Probability of signaling Quality

    Quality control: when the output of a production process is stable at an acceptable standard, it is said to be "in control?. Suppose that a production process has been in control for some time and that the proportion of defectives has been 0.5. as a means of monitorin

  • Q : Problem on Chebyshevs theorem 1. Prove

    1. Prove that the law of iterated expectations for continuous random variables.2. Prove that the bounds in Chebyshev's theorem cannot be improved upon. I.e., provide a distribution which satisfies the bounds exactly for k ≥1, show that it satisfies the

  • Q : Problem on layout A manufacturing

    A manufacturing facility consists of five departments, 1, 2, 3, 4, and 5. It produces four components having manufacturing product routings and production volumes indicated below.   1. Generate the from-to matrix and the interaction matrix. Use a

  • Q : Use the law of iterated expectation to

    Suppose we have a stick of length L. We break it once at some point X _

    Q : Analysing the Probabilities 1. In the

    1. In the waning seconds of Superbowl XLVII, the Baltimore Ravens elected to take a safety rather than punt the ball. A sports statistician wishes to analyze the effect this decision had on the probability of winning the game. (a) Which two of the following probabilities would most help t

  • Q : Variation what are the advantages and

    what are the advantages and disadvantages of seasonal variation