Random variables
Random variables with zero correlation are not necessarily independent. Give a simple example.
Expert
Let X be a normally-distributed random variable with
Mean zero. Let Y = X^2. Obviously, X and Y are not independent: knowing X, gives the value of Y.
The covariance of X and Y is Cov(X,Y) = E(XY) - E(X)E(Y) = E(X^3) - 0*E(Y) = E(X^3) = 0,
because the distribution of X is symmetric around zero. correlation r(X,Y) = Cov(X,Y)/Sqrt[Var(X)Var(Y)] = 0, the random variables are not independent, but correlation is zero.
The table below illustrates the relationship between two variable X and Y. A
You must use the pre-formatted cover sheet when you hand in the assignment. Out full detailed solutions. Sloppy work will naturally receive a lower score. 1. Suppose at each step, a particle moving on sites labelled by integer has three choices: move one site to the right with pro
1) Construct a 99% confidence interval for the population mean µ. 2) At what significance level do the data provide good evidence that the average body temperature is
Monte Carlo Simulation for Determining Probabilities 1. Determining the probability of winning at the game of craps is difficult to solve analytically. We will assume you are playing the `Pass Line.' So here is how the game is played: The shooter rolls a pair of
The number of trucks coming to a certain warehouse each day follows the Poisson distribution with λ= 8. The warehouse can handle a maximum of 12 trucks a day. What is the probability that on a given day one or more trucks have to be sent away? Round the answer
Suppose that your utility, U, is a function only of wealth, Y, and that U(Y) is as drawn below. In this graph, note that U(Y) increases linearly between points a and b. Suppose further that you do not know whether or not you
Activity 10: MANOVA and Reflection 4Comparison of Multiple Outcome Variables This activity introduces you to a very common technique - MANOVA. MANOVA is simply an extension of an ANOVA and allows for the comparison of multiple outcome variables (again, a very common situation in research a
Discuss the following statements and explain why they are true or false: a) Increasing the number of predictor variables will never decrease the R2 b) Multicollinearity affects the int
Define the term Correlation and describe Correlation formula in brief.
18,76,764
1927448 Asked
3,689
Active Tutors
1458755
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!