--%>

Problems on ANOVA

We are going to simulate an experiment where we are trying to see whether any of the four automated systems (labeled A, B, C, and D) that we use to produce our root beer result in a different specific gravity than any of the other systems. For this example, we would like the specific gravity of our root beer to be 1.025. We have found in taste tests that people will notice a difference if the specific gravity is different by more than 0.0015. From historical process control data, we believe that all of the systems have equal variances of 0.00062 for the specific gravity of the root beer they produce.
 
1.  Identify the following:

a. The factor and its levels
b. The treatments
c. Any requirements on taking observations to ensure independence 
 
2. Compute the number of observations per system you need to take for this experiment.
 
3. Randomly generate the number of observations you computed in #1 for each system in Minitab or whatever software package you are using.  Store them in four columns labeled A - D. Use the following distributions for each system: A = N(1.025,0.00062), B = N(1.026,0.00062), C = N(1.0235,0.00062), and D = N(1.0240, 0.00062).
 
4. Conduct an ANOVA, generating a boxplot and a threeYinYone graph of the residuals. Is there any indication in the three in-one plot that the assumptions of the ANOVA have been violated? Are any differences suggested by the boxplot?
 
5. Given your simulated data, are there statistically significant differences between the four systems in terms of their ability to produce root beer that tastes the same to consumers?  
 
6. Regardless of whether differences were found in #3, perform simultaneous comparisons using the Tukey procedure. If differences were found in #3, identify which systems are different than which other systems. If no differences were found in #3, in which case you would not normally conduct Tukey tests, do the Tukey tests support or not support the conclusion from #3? If it differs, which do you trust?

7. Now overwrite column D with a new set of random observations from N(1.024, 0.00182).

a. Repeat step 3 and indicate whether any assumptions of the ANOVA appear to have been violated.  (Hint: There should be one!)
b. Even if assumptions have been violated, check the results of the ANOVA. Do they agree or disagree with your previous results? Given what was done to generate the new data, what does the similarity or dissimilarity of the results tell you about the effect of the violation?
 
8. Suppose that systems A and B are located in one factory, and systems C and D are located in another factory. If you do not care whether there are differences in specific gravity by factory, only by system, how might you separate the effect of factory from the effect due to system?

   Related Questions in Basic Statistics

  • Q : Safety and Liveness in Model Checking

    Safety and Liveness in Model Checking Approach; •? Safety: Nothing bad happens •? Liveness: Something good happens •? Model checking is especially good at verifying safety and liveness properties    –?Concurrency i

  • Q : Computers playing games How Computers

    How Computers playing games can be categorized according to different dimensions?

  • Q : Program Evaluation and Review

    Program Evaluation and Review Technique (PERT) A) Developed by US Navy and a consulting firm in 1958 for the Polaris submarine project. B) Technique as for CPM method, but acti

  • Q : STATISTICS Question This week you will

    This week you will analyze if women drink more sodas than men.  For the purposes of this Question, assume that in the past there has been no difference.  However, you have seen lots of women drinking sodas the past few months.  You will perform a hypothesis test to determine if women now drink more

  • Q : Networks of queues Networks of queues •

    Networks of queues • Typically, the flow of customers/request through a system may involve a number of different processing nodes.– IP packets through a computer network– Orders through a manufactur

  • Q : Data Description 1. If the mean number

    1. If the mean number of hours of television watched by teenagers per week is 12 with a standard deviation of 2 hours, what proportion of teenagers watch 16 to 18 hours of TV a week? (Assume a normal distribution.) A. 2.1% B. 4.5% C. 0.3% D. 4.2% 2. The probability of an offender having a s

  • Q : Define Service Demand Law

    Service Demand Law:• Dk = SKVK, Average time spent by a typical request obtaining service from resource k• DK = (ρk/X

  • Q : Statistics for Management Assignment

    Q : Point of estimate standing data se to

    standing data se to develop a point of estimate

  • Q : Define Operational Analysis

    Operational Analysis: • Analysis method based on the measurement of the operational characteristics of the system.

    Discover Q & A

    Leading Solution Library
    Avail More Than 1452058 Solved problems, classrooms assignments, textbook's solutions, for quick Downloads
    No hassle, Instant Access
    Start Discovering

    18,76,764

    1922801
    Asked

    3,689

    Active Tutors

    1452058

    Questions
    Answered

    Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!

    Submit Assignment

    ©TutorsGlobe All rights reserved 2022-2023.