--%>

Problems on ANOVA

We are going to simulate an experiment where we are trying to see whether any of the four automated systems (labeled A, B, C, and D) that we use to produce our root beer result in a different specific gravity than any of the other systems. For this example, we would like the specific gravity of our root beer to be 1.025. We have found in taste tests that people will notice a difference if the specific gravity is different by more than 0.0015. From historical process control data, we believe that all of the systems have equal variances of 0.00062 for the specific gravity of the root beer they produce.
 
1.  Identify the following:

a. The factor and its levels
b. The treatments
c. Any requirements on taking observations to ensure independence 
 
2. Compute the number of observations per system you need to take for this experiment.
 
3. Randomly generate the number of observations you computed in #1 for each system in Minitab or whatever software package you are using.  Store them in four columns labeled A - D. Use the following distributions for each system: A = N(1.025,0.00062), B = N(1.026,0.00062), C = N(1.0235,0.00062), and D = N(1.0240, 0.00062).
 
4. Conduct an ANOVA, generating a boxplot and a threeYinYone graph of the residuals. Is there any indication in the three in-one plot that the assumptions of the ANOVA have been violated? Are any differences suggested by the boxplot?
 
5. Given your simulated data, are there statistically significant differences between the four systems in terms of their ability to produce root beer that tastes the same to consumers?  
 
6. Regardless of whether differences were found in #3, perform simultaneous comparisons using the Tukey procedure. If differences were found in #3, identify which systems are different than which other systems. If no differences were found in #3, in which case you would not normally conduct Tukey tests, do the Tukey tests support or not support the conclusion from #3? If it differs, which do you trust?

7. Now overwrite column D with a new set of random observations from N(1.024, 0.00182).

a. Repeat step 3 and indicate whether any assumptions of the ANOVA appear to have been violated.  (Hint: There should be one!)
b. Even if assumptions have been violated, check the results of the ANOVA. Do they agree or disagree with your previous results? Given what was done to generate the new data, what does the similarity or dissimilarity of the results tell you about the effect of the violation?
 
8. Suppose that systems A and B are located in one factory, and systems C and D are located in another factory. If you do not care whether there are differences in specific gravity by factory, only by system, how might you separate the effect of factory from the effect due to system?

   Related Questions in Basic Statistics

  • Q : Cumulative Frequency and Relative

    Explain differences between Cumulative Frequency and Relative Frequency?

  • Q : Develop the most appropriate regression

    Predicting Courier Costs The law firm of Adams, Babcock, and Connors is located in the Dallas-Fort metroplex.  Randall Adams is the senior and founding partner of the firm.  John Babcock has been a partne

  • Q : Creating Grouped Frequency Distribution

    Creating Grouped Frequency Distribution: A) At first we have to determine the biggest and smallest values. B) Then we have to Calculate the Range = Maximum - Minimum C) Choose the number of classes wished for. This is generally between 5 to 20. D) Find out the class width by dividing the range b

  • Q : Spss in Business and Management Please

    Please tell me the cost of this current assignment. Note : I do not want the Solutions but please tell me the price as the assignment is .. Is the cost 3 euro? Do you sell those questions?

  • Q : Safety and Liveness in Model Checking

    Safety and Liveness in Model Checking Approach; •? Safety: Nothing bad happens •? Liveness: Something good happens •? Model checking is especially good at verifying safety and liveness properties    –?Concurrency i

  • Q : Computing Average revenue using

    Can anyone help me in the illustrated problem? The airport branch of a car rental company maintains a fleet of 50 SUVs. The inter-arrival time between the requests for an SUV is 2.4 hrs, on an average, with a standard deviation of 2.4 hrs. There is no indication of a

  • Q : State the hypotheses At Western

    At Western University the historical mean of scholarship examination score for freshman applications is 900. Population standard deviation is assumed to be known as 180. Each year, the assistant dean uses a sample of applications to determine whether the mean ex

  • Q : Probability how can i calculate

    how can i calculate cumulative probabilities of survival

  • Q : Networks of queues Networks of queues •

    Networks of queues • Typically, the flow of customers/request through a system may involve a number of different processing nodes.– IP packets through a computer network– Orders through a manufactur

  • Q : Point of estimate standing data se to

    standing data se to develop a point of estimate