--%>

Problems on ANOVA

We are going to simulate an experiment where we are trying to see whether any of the four automated systems (labeled A, B, C, and D) that we use to produce our root beer result in a different specific gravity than any of the other systems. For this example, we would like the specific gravity of our root beer to be 1.025. We have found in taste tests that people will notice a difference if the specific gravity is different by more than 0.0015. From historical process control data, we believe that all of the systems have equal variances of 0.00062 for the specific gravity of the root beer they produce.
 
1.  Identify the following:

a. The factor and its levels
b. The treatments
c. Any requirements on taking observations to ensure independence 
 
2. Compute the number of observations per system you need to take for this experiment.
 
3. Randomly generate the number of observations you computed in #1 for each system in Minitab or whatever software package you are using.  Store them in four columns labeled A - D. Use the following distributions for each system: A = N(1.025,0.00062), B = N(1.026,0.00062), C = N(1.0235,0.00062), and D = N(1.0240, 0.00062).
 
4. Conduct an ANOVA, generating a boxplot and a threeYinYone graph of the residuals. Is there any indication in the three in-one plot that the assumptions of the ANOVA have been violated? Are any differences suggested by the boxplot?
 
5. Given your simulated data, are there statistically significant differences between the four systems in terms of their ability to produce root beer that tastes the same to consumers?  
 
6. Regardless of whether differences were found in #3, perform simultaneous comparisons using the Tukey procedure. If differences were found in #3, identify which systems are different than which other systems. If no differences were found in #3, in which case you would not normally conduct Tukey tests, do the Tukey tests support or not support the conclusion from #3? If it differs, which do you trust?

7. Now overwrite column D with a new set of random observations from N(1.024, 0.00182).

a. Repeat step 3 and indicate whether any assumptions of the ANOVA appear to have been violated.  (Hint: There should be one!)
b. Even if assumptions have been violated, check the results of the ANOVA. Do they agree or disagree with your previous results? Given what was done to generate the new data, what does the similarity or dissimilarity of the results tell you about the effect of the violation?
 
8. Suppose that systems A and B are located in one factory, and systems C and D are located in another factory. If you do not care whether there are differences in specific gravity by factory, only by system, how might you separate the effect of factory from the effect due to system?

   Related Questions in Basic Statistics

  • Q : Regression Analysis 1. A planning

    1. A planning official in the Texas Department of Community Affairs, which works in the office next to you, has a problem. He has been handed a data set from his boss that includes the costs involved in developing local land use plans for communities wi

  • Q : Problem on queuing diagram Draw a 

    Draw a queuing diagram for the systems below and describe them using Kendall’s notation: A) Single CPU system <

  • Q : State the hypotheses At Western

    At Western University the historical mean of scholarship examination score for freshman applications is 900. Population standard deviation is assumed to be known as 180. Each year, the assistant dean uses a sample of applications to determine whether the mean ex

  • Q : State Littles Law Little’s Law : • L =

    Little’s Law: • L = λR = XR • Lq = λW = XW • Steady state system • Little’s Law holds as long as customers are not destroyed or&nbs

  • Q : What is your conclusion The following

    The following data were collected on the number of emergency ambulance calls for an urban county and a rural county in Florida. Is County type independent of the day of the week in receiving the emergency ambulance calls? Use α = 0.005. What is your conclusion? Day of the Week<

  • Q : Compute two sample standard deviations

    Consider the following data for two independent random samples taken from two normal populations. Sample 1 14 26 20 16 14 18 Sample 2 18 16 8 12 16 14 a) Com

  • Q : What is Interactive Response Time Law

    Interactive Response Time Law: • R = (L/X) - Z• Applies to closed systems.• Z is the think time. The time elapsed since&nb

  • Q : Point of estimate standing data se to

    standing data se to develop a point of estimate

  • Q : Define Operational Analysis

    Operational Analysis: • Analysis method based on the measurement of the operational characteristics of the system.

    Q : FIN512 Entrepreneurial Finance Chapter

      Chapter 6: Discussion Question: #4 p. 223  It is usually easier to forecast sales for a seasoned firm contrast to an early-stage venture because an early-stage venture has limited access to bank credit lines, sho