--%>

Problems on ANOVA

We are going to simulate an experiment where we are trying to see whether any of the four automated systems (labeled A, B, C, and D) that we use to produce our root beer result in a different specific gravity than any of the other systems. For this example, we would like the specific gravity of our root beer to be 1.025. We have found in taste tests that people will notice a difference if the specific gravity is different by more than 0.0015. From historical process control data, we believe that all of the systems have equal variances of 0.00062 for the specific gravity of the root beer they produce.
 
1.  Identify the following:

a. The factor and its levels
b. The treatments
c. Any requirements on taking observations to ensure independence 
 
2. Compute the number of observations per system you need to take for this experiment.
 
3. Randomly generate the number of observations you computed in #1 for each system in Minitab or whatever software package you are using.  Store them in four columns labeled A - D. Use the following distributions for each system: A = N(1.025,0.00062), B = N(1.026,0.00062), C = N(1.0235,0.00062), and D = N(1.0240, 0.00062).
 
4. Conduct an ANOVA, generating a boxplot and a threeYinYone graph of the residuals. Is there any indication in the three in-one plot that the assumptions of the ANOVA have been violated? Are any differences suggested by the boxplot?
 
5. Given your simulated data, are there statistically significant differences between the four systems in terms of their ability to produce root beer that tastes the same to consumers?  
 
6. Regardless of whether differences were found in #3, perform simultaneous comparisons using the Tukey procedure. If differences were found in #3, identify which systems are different than which other systems. If no differences were found in #3, in which case you would not normally conduct Tukey tests, do the Tukey tests support or not support the conclusion from #3? If it differs, which do you trust?

7. Now overwrite column D with a new set of random observations from N(1.024, 0.00182).

a. Repeat step 3 and indicate whether any assumptions of the ANOVA appear to have been violated.  (Hint: There should be one!)
b. Even if assumptions have been violated, check the results of the ANOVA. Do they agree or disagree with your previous results? Given what was done to generate the new data, what does the similarity or dissimilarity of the results tell you about the effect of the violation?
 
8. Suppose that systems A and B are located in one factory, and systems C and D are located in another factory. If you do not care whether there are differences in specific gravity by factory, only by system, how might you separate the effect of factory from the effect due to system?

   Related Questions in Basic Statistics

  • Q : Correlation analysis and the regression

    1).  When you take out a mortgage, there are many different kinds of costs.  Usually the two largest are the interest rate (annual percentage that determines the size of your monthly payment) and the loan fee (a one-time percentage charged to you at the time

  • Q : State the hypotheses At Western

    At Western University the historical mean of scholarship examination score for freshman applications is 900. Population standard deviation is assumed to be known as 180. Each year, the assistant dean uses a sample of applications to determine whether the mean ex

  • Q : Report on Simple Random Sampling with

    One of my friend has a problem on simple random sampling. Can someone provide a complete Report on Simple Random Sampling with or without replacement?

  • Q : Computers playing games How Computers

    How Computers playing games can be categorized according to different dimensions?

  • Q : Calculate the p- value Medical tests

    Medical tests were conducted to learn about drug-resistant tuberculosis. Of 284 cases tested in New Jersey, 18 were found to be drug- resistant. Of 536 cases tested in Texas, 10 were found to be drugresistant. Do these data indicate that New Jersey has a statisti

  • Q : Simplified demonstration of Littles Law

    Simplified demonstration of Little’s Law:

    Q : What is Inter-arrival times

    Inter-arrival times:A) Requests arrive randomly, often separated by small time intervals with few long separations among themB) The time until the next arrival is independent of when the last arrival occurredC) Coro

  • Q : Probability how can i calculate

    how can i calculate cumulative probabilities of survival

  • Q : Derived quantities in Queuing system

    Derived quantities in Queuing system: • λ = A / T, Arrival rate • X = C / T, Throughput or completion rate • ρ =U= B / T, Utilization &bu

  • Q : Explain Service times Service times: A)

    Service times:A) In most cases, servicing a request takes a “short” time, but in a few occasions requests take much longer.B) The probability of completing a service request by time t, is independent of how much tim