--%>

Problem on utility funtion probability

Suppose that your utility, U, is a function only of wealth, Y, and that U(Y) is as drawn below. In this graph, note that U(Y) increases linearly between points a and b. 

Suppose further that you do not know whether or not you will be sick, but you do know that the probability of becoming sick is p (while the probability of staying healthy is 1-p).  If you do get sick, your wealth will be Ys = 0.  If you do not get sick, your wealth will be Yh > 0. 

1940_utility function.jpg

(1) Write an expression for expected income, EI, and an expression for expected utility without insurance.
 
(2) Assume that a < EI < b.  Draw, on the graph above, a line showing expected utility without insurance. Also draw a line showing expected utility with actuarially fair full insurance.

(3) Consider an actuarially fair partial insurance contract that offers a if you are sick and b if you are healthy. Would your utility with such a contract be greater or less than your utility with an actuarially fair full insurance contract? Briefly, explain. 

   Related Questions in Advanced Statistics

  • Q : Describe how random sampling serves

    Explain sampling bias and describe how random sampling serves to avoid bias in the process of data collection.    

  • Q : Binomial distribution 1) A Discrete

    1) A Discrete random variable can be described as Binomial distribution if is satisfies four conditions, Briefly discuss each of these conditions2) A student does not study for a multiple choice examination and decides to guess the correct answers, If the

  • Q : Probability of Rolling die problem A

    A fair die is rolled (independently) 12 times. (a) Let X denote the total number of 1’s in 12 rolls. Find the expected value and variance of X. (b) Determine the probability of obtaining e

  • Q : Non-parametric test what is the

    what is the appropriate non-parametric counterpart for the independent sample t test?

  • Q : Pearsons correlation coefficient The

    The table below illustrates the relationship between two variable X and Y. A

  • Q : MANOVA and Reflection Activity 10:

    Activity 10: MANOVA and Reflection 4Comparison of Multiple Outcome Variables This activity introduces you to a very common technique - MANOVA. MANOVA is simply an extension of an ANOVA and allows for the comparison of multiple outcome variables (again, a very common situation in research a

  • Q : Calculate confidence interval A nurse

    A nurse anesthetist was experimenting with the use of nitronox as an anesthetic in the treatment of children's fractures of the arm.  She treated 50 children and found that the mean treatment time (in minutes) was 26.26 minutes with a sample standard deviation of

  • Q : Probability problem A) What is the

    A) What is the probability of getting the following sequence with a fair die (as in dice):B) What is the probability of getting the same sequence with a die that is biased in the following way: p(1)=p(2)=p(3)=p(4)=15%;

  • Q : How you would use randomization in

    The design of instrument controls affects how easily people can use them. An investigator used 25 students who were right-handed to determine whether right-handed subjects preferred right-handed threaded knobs. He had two machines that differed only in that one had a

  • Q : Problem related to playing cards Cards

    Cards are randomly drawn one at the time and with replacement from a standard deck of 52 playing cards. (a) Find the probability of getting the fourth spades on the 10th draw. (b) Determine the