--%>

Problem on synchronous TDM

We require using synchronous TDM and joining 20 digital sources, each of 100 Kbps. Each and every output slot carries 1 bit for each digital source, however one extra bit is added up to each frame for synchronization.

a. Determine the size of an output frame in bits?

b. Evaluate the output frame rate?

c. Find out the duration of an output frame?

d. Determine the output data rate?

E

Expert

Verified

a. Frame size = 20*1 + 1(for synchronization) = 21 bits

b. Each frame carries 1 bit from each source,
Hence frame rate = 100, 000 frames/sec

c. Duration = 1/ frame rate = 10 Usec

d. Data rate = (100,000 frames/ sec) * (21 bits / frame) = 2.1 mps

   Related Questions in Physics

  • Q : Law of Machines Describe briefly all

    Describe briefly all the Law of Machines?

  • Q : Define Rydberg constant Rydberg

    Rydberg constant (Rydberg): The constant that governs the relationship of the spectral line features of an atom via the Rydberg formula. For hydrogen, it is around 1.097 x 107 m-1.

  • Q : Explain Fizeau method Fizeau method (A.

    Fizeau method (A. Fizeau, 1851): One of the primary truthfully relativistic experiments intended to compute the speed of light. Light is passed via a spinning cog-wheel driven by running water, is reflected off a far-away mirror, and

  • Q : Define Fermi paradox Fermi paradox (E.

    Fermi paradox (E. Fermi): E. Fermi's inference, simplified with the phrase, "Where are they?" questioning that when the Galaxy is filled with intelligent and scientific civilizations, why haven't they come to us hitherto? There are nu

  • Q : Explain Stefan-Boltzmann law

    Stefan-Boltzmann law (Stefan, L. Boltzmann): The radiated power P (that is the rate of emission of electromagnetic energy) of a hot body is proportional to the radiating surface area, A, and the 4th power of the thermodynamic temperature, T. The const

  • Q : Define Stefan-Boltzmann constant

    Stefan-Boltzmann constant: sigma (Stefan, L. Boltzmann): The constant of proportionality exist in the Stefan-Boltzmann law. It is equivalent to 5.6697 x 10-8 W/m2/K4.

  • Q : Nuclear Physics Homework Help NUCLEAR

    NUCLEAR PHYSICS (PHY555) HOMEWORK #1 1. Calculate the luminosity for a beam of protons of 1 µA colliding with a stationary liquid hydrogen target 30 cm long. Compare this to a typical colliding beam luminosity of ∼1034 cm-2

  • Q : Define Relativity principle Relativity

    Relativity principle: The principle, utilized by Einstein's relativity theories, that the laws of physics are similar, at least qualitatively, in all frames. That is, there is no frame which is better (or qualitatively any different) from any other. T

  • Q : What is Reflection law Reflection law :

    Reflection law: For a wave-front intersecting a reflecting surface, the angle of incidence is equivalent to the angle of reflection, in the similar plane stated by the ray of incidence and the normal.

  • Q : Elementary particles concepts Write

    Write down any two elementary particles that have nearly infinite life time?