Problem on spacecraft
Assuming that ground stations are equally distributed on the Earth, how many ground stations are required to maintain constant contact with a spacecraft at 750 km altitude, and 72 degrees inclination?
Expert
Given:
θ (theta) = 72°, Perpendicular distance of spacecraft=750 km.
We know that, 1° = π/180 radian, Radius of earth=6400 km. So, 72°= (72*π)/180 radian, = 2*π/5Since,θ = Arc/Radius,
Therefore, Arc = θ*Radius, =2*π*750/5, = 300π
Circumference of earth = 2*π*Radius = 2*π*6400
No. of space station = Circumference of earth/2*Arc = (2*π*6400)/(2*300*π) = 21 space station (approx.)
Compton Effect (A.H. Compton; 1923): The effect which describes those photons (that is the quantum of electromagnetic radiation) has momentum. The photon fired at a stationary particle, like an electron, will communicate momentum to t
Tesla: T (after N. Tesla, 1870-1943): The derived SI unit of the magnetic flux density stated as the magnetic flux density of a magnetic flux of 1 Wb via an area of 1 m2; it therefore has units of Wb/m2.
Brewster's law (D. Brewster) - The extent or level of the polarization of light reflected from a transparent surface is maximum whenever the reflected ray is at right angle to the refracted ray.
Stefan-Boltzmann law (Stefan, L. Boltzmann): The radiated power P (that is the rate of emission of electromagnetic energy) of a hot body is proportional to the radiating surface area, A, and the 4th power of the thermodynamic temperature, T. The const
NUCLEAR PHYSICS (PHY555) HOMEWORK #1 1. Calculate the luminosity for a beam of protons of 1 µA colliding with a stationary liquid hydrogen target 30 cm long. Compare this to a typical colliding beam luminosity of ∼1034 cm-2
Volt: V (after A. Volta, 1745-1827): The derived SI unit of electric potential, stated as the difference of potential among the two points on a conductor fetching a constant current of 1 A whenever the power dissipated between the points is 1 W;
Pascal: Pa The derived SI unit of pressure stated as 1 N acting over a region of 1 m2; it therefore has units of N/m2
Super fluidity: The phenomenon by which, at adequately low temperatures, a fluid can flow with zero (0) viscosity. These causes are related with the superconductivity.
Metre: meter; m: The basic SI unit of length, stated as the length of the path traveled by light in vacuum throughout a period of 1/299 792 458 s.
Uniformity principle (E.P. Hubble): The principle which the laws of physics here and now are not dissimilar, at least qualitatively, from the laws of physics in preceding or future epochs of time, or somewhere else in the Universe. This principle was
18,76,764
1956595 Asked
3,689
Active Tutors
1438105
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!