--%>

Problem on Redlich-Kwong equation

i) Welcome to Beaver Gas Co.! Your first task is to calculate the annual gross sales of our superpure-grade nitrogen and oxygen gases.

a) The total gross sales of N2 is 30,000 units. Take the volume of the cylinder to be 43 L, the pressure to be 12,400 kPa, and the cost to be $6.I/kg. Compare your result to that you would obtain using the ideal gas model.

b) Repeat for 30,000 units of O2 at 15,000 kPa and $9/kg.

ii) Use the Redlich-Kwong equation to calculate the size of vessel you would need to contain 30 kg of acetylene mixed with 50 kg of n-butane at 30 bar and 450 K. The binary interaction coefficient is given by k12 = 0.092.

E

Expert

Verified

(i)

(a) The amount in kg, of superpure grade N2, per container is calculated below,

PV = nRT

n = PVT1/(TP1V1/n1)) ... where suffix 1 indicates conditions at STP.

n = (12400)(43x10-3)(273)/((298)(101)(22.4)) = 0.22 kmol

m = Mn = 28 x 0.22 = 6.16 kg.

Hence according to Ideal gas law, there'll be 6.16 kg per unit of superpure-grade N2.

And the annual gross sales will be $ 6.1 x 6.16 x 30000 = $1127280 = $1.13 million

(b) The amount in kg, of superpure grade O2, per container is calculated below,

PV = nRT

n = PVT1/(TP1V1/n1)) ... where suffix 1 indicates conditions at STP.

n = (15000)(43x10-3)(273)/((298)(101)(22.4)) = 0.27 kmol

m = Mn = 32 x 0.27 = 8.64 kg.

Hence according to Ideal gas law, there'll be 8.64 kg per unit of superpure-grade O2.

And the annual gross sales will be $ 9 x 8.64 x 30000 = $ 2332800 = $2.33 million

(ii)

The following data is obtained from Internet.

Acetylene

MW 26 g/mol
Pc 61.91 bar
Tc 35.1 oC

n-butane

MW 58.12
Pc   38 bar
T  425 K

The total amount of mixture in kmol = 30/26 + 50/58.12 = 2.01

x1 = mole fraction of acetylene = (30/26)/2.01 = 0.57

x2 = mole fraction of n-butane = 0.43

Redlich-Kwong parameters (Note that P is in kPa and T is in K)

acetylene:

a1 = 0.427R2Tc2.5/Pc = 0.427(8.314)2(308.2)2.5/6273 = 7846
b1 = 0.0866RTc/Pc = 0.0866(8.314)(308.2)/6273 = 0.0354

n-butane:

a2 = 0.427R2Tc2.5/Pc = 0.427(8.314)2(425)2.5/3850 = 28547

b2 = 0.0866RTc/Pc = 0.0866(8.314)(425)/3850 = 0.0795

Using the following mixing rules, we'll find a and b for the binary mixture.

aij = (1 – kij)ai1/2aj1/2  and a = ΣΣxixjaij  ; b = Σxib  ......(1)

a12 = a21 = (1 – 0.092)(7846)1/2(28547)1/2 = 13589

a11 = a1; and a22 = a2.

Now using equation (1)

a = (0.57)(0.57)(7846) + (0.57)(0.43)(13589) + (0.43)(0.43) (28547) + (0.43)(0.57)(13589) = 14489

b = 0.57x0.0354 + 0.43x0.0795 = 0.054

The Redlich Kwong equation,

P = {RT/(Vm – b)} - {a/(T1/2Vm(Vm+b))}

Use the given values,

P = 30 bar = 3030.75 kPa

T = 450 K

After rearraning the Redlich-Kwong equation we get a cubic polynomial in Vm.
64483Vm3 – 79465Vm2 – 4479Vm – 782 = 0

We obtain the roots using MATLAB's roots function,

1.29
-0.0305 + 0.0919i
-0.0305 - 0.0919i

Hence the volume of the vessel is Vm x No of moles,
= 1.29 x 2.01 = 2.6 m3 = 2600 lit.

   Related Questions in Chemistry

  • Q : Problem on relative humidity Relative

    Relative humidity is the ratio of the partial pressure of water in air to the partial pressure of water in air saturated with water at the same temperature, stated as a percentage: Relative  =

    Q : Entropy on molecular basis. The

    The equation S = k in W relates entropy to W, a measure of the number of different molecular level arrangements of the system.In the preceding developments it was unnecessary to attempt to reach any "explana

  • Q : Donnan Membrane Equilibria The electric

    The electric charge acquired by macromolecules affects the equilibrium set up across a semipermeable membrane.Laboratory studies of macromolecule solutions as in osmotic pressure and dialysis studies confine the macromolecules to one compartment while allo

  • Q : What is electrolytic dissociation? The

    The Debye Huckel theory shows how the potential energy of an ion in solution depends on the ionic strength of the solution.Except at infinite dilution, electrostatic interaction between ions alters the properties of the solution from those excepted from th

  • Q : Reducible Representations The number of

    The number of times each irreducible representation occurs in a reducible representation can be calculated.Consider the C2v point group as described or Appendix C. you can see that (1) sum of

  • Q : Relative lowering of vapour pressure

    explain the process of relative lowering of vapour pressure

  • Q : What do you mean by the term alum What

    What do you mean by the term alum? Also illustrate its uses?

  • Q : Rotational energy and entropy due to

    The entropy due to the rotational motion of the molecules of a gas can be calculated. Linear molecules: as was pointed out, any rotating molecule has a set of allowed rotational energies. For a linear molecule the

  • Q : Strength of any solution Give me answer

    Give me answer of this question. A solution contains 1.2046 x 1024 hydrochloric acid molecules in one dm3 of the solution. The strength of the solution is: (a) 6 N (b) 2 N (c) 4 N (d) 8 N

  • Q : Problem on moles of solution The number

    The number of moles of a solute in its solution is 20 and total no. of moles are 80. The mole fraction of solute wil be: (a) 2.5 (b) 0.25 (c) 1 (d) 0.75