--%>

Problem on Redlich-Kwong equation

i) Welcome to Beaver Gas Co.! Your first task is to calculate the annual gross sales of our superpure-grade nitrogen and oxygen gases.

a) The total gross sales of N2 is 30,000 units. Take the volume of the cylinder to be 43 L, the pressure to be 12,400 kPa, and the cost to be $6.I/kg. Compare your result to that you would obtain using the ideal gas model.

b) Repeat for 30,000 units of O2 at 15,000 kPa and $9/kg.

ii) Use the Redlich-Kwong equation to calculate the size of vessel you would need to contain 30 kg of acetylene mixed with 50 kg of n-butane at 30 bar and 450 K. The binary interaction coefficient is given by k12 = 0.092.

E

Expert

Verified

(i)

(a) The amount in kg, of superpure grade N2, per container is calculated below,

PV = nRT

n = PVT1/(TP1V1/n1)) ... where suffix 1 indicates conditions at STP.

n = (12400)(43x10-3)(273)/((298)(101)(22.4)) = 0.22 kmol

m = Mn = 28 x 0.22 = 6.16 kg.

Hence according to Ideal gas law, there'll be 6.16 kg per unit of superpure-grade N2.

And the annual gross sales will be $ 6.1 x 6.16 x 30000 = $1127280 = $1.13 million

(b) The amount in kg, of superpure grade O2, per container is calculated below,

PV = nRT

n = PVT1/(TP1V1/n1)) ... where suffix 1 indicates conditions at STP.

n = (15000)(43x10-3)(273)/((298)(101)(22.4)) = 0.27 kmol

m = Mn = 32 x 0.27 = 8.64 kg.

Hence according to Ideal gas law, there'll be 8.64 kg per unit of superpure-grade O2.

And the annual gross sales will be $ 9 x 8.64 x 30000 = $ 2332800 = $2.33 million

(ii)

The following data is obtained from Internet.

Acetylene

MW 26 g/mol
Pc 61.91 bar
Tc 35.1 oC

n-butane

MW 58.12
Pc   38 bar
T  425 K

The total amount of mixture in kmol = 30/26 + 50/58.12 = 2.01

x1 = mole fraction of acetylene = (30/26)/2.01 = 0.57

x2 = mole fraction of n-butane = 0.43

Redlich-Kwong parameters (Note that P is in kPa and T is in K)

acetylene:

a1 = 0.427R2Tc2.5/Pc = 0.427(8.314)2(308.2)2.5/6273 = 7846
b1 = 0.0866RTc/Pc = 0.0866(8.314)(308.2)/6273 = 0.0354

n-butane:

a2 = 0.427R2Tc2.5/Pc = 0.427(8.314)2(425)2.5/3850 = 28547

b2 = 0.0866RTc/Pc = 0.0866(8.314)(425)/3850 = 0.0795

Using the following mixing rules, we'll find a and b for the binary mixture.

aij = (1 – kij)ai1/2aj1/2  and a = ΣΣxixjaij  ; b = Σxib  ......(1)

a12 = a21 = (1 – 0.092)(7846)1/2(28547)1/2 = 13589

a11 = a1; and a22 = a2.

Now using equation (1)

a = (0.57)(0.57)(7846) + (0.57)(0.43)(13589) + (0.43)(0.43) (28547) + (0.43)(0.57)(13589) = 14489

b = 0.57x0.0354 + 0.43x0.0795 = 0.054

The Redlich Kwong equation,

P = {RT/(Vm – b)} - {a/(T1/2Vm(Vm+b))}

Use the given values,

P = 30 bar = 3030.75 kPa

T = 450 K

After rearraning the Redlich-Kwong equation we get a cubic polynomial in Vm.
64483Vm3 – 79465Vm2 – 4479Vm – 782 = 0

We obtain the roots using MATLAB's roots function,

1.29
-0.0305 + 0.0919i
-0.0305 - 0.0919i

Hence the volume of the vessel is Vm x No of moles,
= 1.29 x 2.01 = 2.6 m3 = 2600 lit.

   Related Questions in Chemistry

  • Q : Solutions The normality of 10 lit.

    The normality of 10 lit. volume hydrogen peroxide is: (a) 0.176 (b) 3.52 (c) 1.78 (d) 0.88 (e)17.8

  • Q : Describe the properties of the

    Briefly describe the properties of the carbohydrates?

  • Q : Solution and colligative properties

    what is molarity of a solution of hcl which contains 49% by weight of solute and whose specific gravity is 1.41

  • Q : Chem Explain how dissolving the Group

    Explain how dissolving the Group IV carbonate precipitate with 6M CH3COOH, followed by the addition of extra acetic acid.

  • Q : Molarity of the final mixture Can

    Can someone please help me in getting through this problem. Two solutions of a substance (that is, non electrolyte) are mixed in the given manner 480 ml of 1.5M first solution + 520 ml of 1.2M second solution. Determine the molarity of the final mixture

  • Q : What is electrolytic dissociation? The

    The Debye Huckel theory shows how the potential energy of an ion in solution depends on the ionic strength of the solution.Except at infinite dilution, electrostatic interaction between ions alters the properties of the solution from those excepted from th

  • Q : Organic and inorganic chemistry Write

    Write down a short note on the differences between the organic and inorganic chemistry?

  • Q : Coordination number of a cation The

    The coordination number of a cation engaging a tetrahedral hole is: (a) 6  (b) 8  (c) 12  (d) 4 Answer: (d) The co-ordination number of a cation occupying a tetrahedral hole is 4.

  • Q : Solubility are halides are halogens

    are halides are halogens more soluble? why?

  • Q : Explain Phase Rule The relation between

    The relation between the number of phases, components and the degrees of freedom is known as the phase rule. One constituent systems: the identification of an area on a P-versus-T with one phase of a component system illustrates the two degrees of freedom that