--%>

Problem on pressure rise of a water tank

The water level in a tank is about 20 m above the ground. A hose is joined to the bottom of the tank, and the nozzle in the end of the hose is pointed to straight up. The tank is at sea level, and the water surface is open to the environment. In the line leading from the tank to the nozzle is a pump, that rises the pressure of water. If the water jet increases to a height of 27 m from the ground, then find out the minimum pressure rise that is supplied by the pump to the water line.

828_pressure rise.jpg

E

Expert

Verified

Entry and exit losses at the pump and nozzle are neglected since no data is given

The Bernoulli’s equation

P1/δg + V12/2g +z1 = P2/δg + V22/2g +z2 + Losses (L) – (i) 
P1/δg =  pressure head V2/2g =velocity head Z=  height

Assuming an air  density of 1.225 Kg/m3

Pressure at (2) = δa gh
                      = 1.225 x 9.81x 7
                      = 84.12 Pa ( below  atmosphere

P2 =Absolute pressure at (2)  = Atmospheric  pressure – 84.12
                    = 101.325 x 103 – 84.12
                    = 101240.88 Pa
                    = δa g h + PP ( PP = pump pressure , SW= Water density)
                    =1000 x 9.81 x 20x+PP
                    =196200 + PP Pa

P1=Absolute pressure at (1)  = Patm  +  PP + 196200
                                           = 297525 +PP Pa
V1=V2 =0 a very negligible

Substituting  is (1) where δ =δw  = 1000 Kg/ m3 in the density of water
297525 +PP/ 1000g = 101240.88/ 1000g + 27
Solving for PP , it  comes out to be

PP = 68585.88Pa

   Related Questions in Mechanical Engineering

  • Q : Problem on degree of freedom Draw a

    Draw a frequency-response curves for a damped single degree of freedom system subjected to a harmonic excitation under three different damping ratios. System has a natural frequency of ωn as the forcing frequency of the excitation is ω. Describe

  • Q : To designe pump how to design e gear

    how to design e gear pump. show the process.

  • Q : Solution A pump station has been

    A pump station has been designed to lift water out of a 6 metre deep pit (vented to atmosphere) via a centrifigual pump mounted at ground level. Liquid conditions 20OC Suction pipe work losses 2.0 metres NPSH safety factor 5.0 kPa Vapor pressure @ 20oC 0.25 metres (a) Calculat

  • Q : Size and weight in Product design

    Size and weight: If the product is particularly small the cost may be increased if more precise manufacturing methods are demanded. Weight restriction will as well influence materials to be utilized: this in turn will influence the manufacturing proce

  • Q : Stop cooling-water flow in turbine

    Whether you stop cooling-water flow through steam condenser when the turbine is slopped?

  • Q : SI Engines Illustrate why several types

    Illustrate why several types of the sound are generated in different bikes, although they run on the SI Engines?

  • Q : Numerically controlled Mechatronics

    What do you mean by Numerically controlled Mechatronics and what are its components?

  • Q : Modal Combination Rules What are the

    What are the Modal Combination Rules in order to determine the peak value of the total response?

  • Q : Unilateral and Bilateral Tolerance

    Explain difference between the Unilateral and Bilateral Tolerance?

  • Q : Efficient use of waste heat and

    Efficient use of waste heat and renewable heat sources 1. Describe how you might recover heat from (a) a process exhaust gas stream (e.g. from an oven) and (b) a process warm water stream (e.