--%>

Problem on Nash equilibrium

In a project, employee and boss are working altogether. The employee can be sincere or insincere, and the Boss can either reward or penalize. The employee gets no benefit for being sincere but gets utility for being insincere (30), for getting rewarded (10) and for being penalized (-30). The Boss gets utility from seeing sincere (20) or insincere (-10) behavior. They also get utility for giving rewards and by penalizing, but the size of the utility change depends on whether the reward obeys sincere (20) or insincere (10)  work. Likewise the size of the utility change depends on whether the penalty obeys sincere (-10) or insincere (0) behavior.

a) Determine the Nash equilibrium making use of the extensive form and.
b) Recommend,what could the Boss do to enhance the end result?

   Related Questions in Mathematics

  • Q : Formal logic2 It's a problem set, they

    It's a problem set, they are attached. it's related to Sider's book which is "Logic to philosophy" I attached the book too. I need it on feb22 but feb23 still work

  • Q : What is limit x tends to 0 log(1+x)/x

    What is limit x tends to 0  log(1+x)/x to the base a?

  • Q : Maths assignment complete assignment

    complete assignment with clear solution and explanation

  • Q : Solve each equation by factoring A

    A college student invested part of a $25,000 inheritance at 7% interest and the rest at 6%.  If his annual interest is $1,670 how much did he invest at 6%?  If I told you the answer is $8,000, in your own words, using complete sentences, explain how you

  • Q : Problem on Datalog for defining

    The focus is on  the use of Datalog for defining properties  and queries on graphs. (a) Assume that P is some property of graphs  definable in the Datalog. Show that P is preserved beneath extensions  and homomo

  • Q : Examples of groups Examples of groups:

    Examples of groups: We now start to survey a wide range of examples of groups (labelled by (A), (B), (C), . . . ). Most of these come from number theory. In all cases, the group axioms should be checked. This is easy for almost all of the examples, an

  • Q : Explain Factorisation by trial division

    Factorisation by trial division: The essential idea of factorisation by trial division is straightforward. Let n be a positive integer. We know that n is either prime or has a prime divisor less than or equal to √n. Therefore, if we divide n in

  • Q : State Measuring complexity Measuring

    Measuring complexity: Many algorithms have an integer n, or two integers m and n, as input - e.g., addition, multiplication, exponentiation, factorisation and primality testing. When we want to describe or analyse the `easiness' or `hardness' of the a

  • Q : Bolzano-Weierstrass property The

    The Bolzano-Weierstrass property does not hold in C[0, ¶] for the infinite set A ={sinnx:n<N} : A is infinite; Show that has no “ limit points”.

  • Q : Linear programming model of a Cabinet

    A cabinet company produces cabinets used in mobile and motor homes. Cabinets produced for motor homes are smaller and made from less expensive materials than those for mobile homes. The home office in Dayton Ohio has just distributed to its individual manufacturing ce