--%>

Problem on molality

Select the right answer of the question. Calculate the molality of 1 litre solution of 93% H2SO4 (weight/volume). The density of the solution is 1.84 g /ml : (a) 10.43 (b) 20.36 (c) 12.05 (d) 14.05

   Related Questions in Chemistry

  • Q : Questuion associated with colligative

    Provide solution of this question. Which of the following is a colligative property: (a) Surface tension (b) Viscosity (c) Osmotic pressure (d) Optical rotation

  • Q : Colligative property problem Which is

    Which is not a colligative property: (a) Refractive index (b) Lowering of vapour pressure (c) Depression of freezing point (d) Elevation of boiling point    

  • Q : Ionization Potential Second ionization

    Second ionization potential of Li, Be and B is in the order (a)Li>Be>B (b)Li>B>Be (c)Be>Li>B (d)B>Be>Li

  • Q : Determining concentration in ppm A 500

    A 500 gm tooth paste sample has 0.2g fluoride concentration. Determine the concentration of F in terms of ppm level: (a) 250 (b) 200 (c) 400 (d) 1000Answer: (c) F-ions in ppm = (0.2/500) x 106 = 400

  • Q : Kinds of insulators Describe all the

    Describe all the kinds of insulators which are present?

  • Q : Describe Point Groups. For any

    For any symmetric object there is a set of symmetry operations that, together, constitute a mathematical group, called a point group.It is clear from the examples that most molecules have several elements of symmetry. The H2O

  • Q : Define Virial Equation The constant of

    The constant of vander Waal's equation can be related to the coefficients of the virial equation.  Vander Waal's equation provides a good overall description of the real gas PVT behaviour. Now let us

  • Q : What do you mean by the term hydra What

    What do you mean by the term hydra? Briefly define it.

  • Q : Question on seminormal solution Provide

    Provide solution of this question. The weight of sodium carbonate required to prepare 500 ml of a seminormal solution is: (a) 13.25 g (b) 26.5 g (c) 53 g (d) 6.125 g

  • Q : Relationship between free energy and

    The free energy of a gas depends on the pressure that confines the gas. The standard free energies of formation, like those allow predictions to be made of the possibility of a reaction at 25°C for each reagent at