--%>

Problem on Model Checking

Part (a). Draw a state diagram for a car with the following state variables: D indicating whether the car is in drive; B indicating the brake pedal is depressed; G indicating the gas pedal is depressed; and M indicating whether the car is moving. (For example, the state DB¬G¬M says that the car is in drive, the brake pedal is down, the gas pedal is not down, and the car is not moving). Your state diagram should obey the following properties:

The start state is ¬D¬B¬G¬M.

  • To put the car in drive, the brake pedal must be down.
  • To push the gas pedal, the car must be in drive.
  • It is not possible to push both the gas and the brake at the same time.
  • Once the gas is down, the car will eventually move.
  • Once the car is moving, it is possible to stop the car by depressing the brake.

Part (b). For each of properties 1-4 listed in Part (a), write an LTL formula specifying the property, and make an informal argument why the property holds for your diagram.

Part (c). Is it possible to specify property 5 using an LTL formula? Justify your answer.

   Related Questions in Basic Statistics

  • Q : Creating Grouped Frequency Distribution

    Creating Grouped Frequency Distribution: A) At first we have to determine the biggest and smallest values. B) Then we have to Calculate the Range = Maximum - Minimum C) Choose the number of classes wished for. This is generally between 5 to 20. D) Find out the class width by dividing the range b

  • Q : Designing a system What are the

    What are the questions that comes into mind when designing a system?

  • Q : Safety and Liveness in Model Checking

    Safety and Liveness in Model Checking Approach; •? Safety: Nothing bad happens •? Liveness: Something good happens •? Model checking is especially good at verifying safety and liveness properties    –?Concurrency i

  • Q : Point of estimate standing data se to

    standing data se to develop a point of estimate

  • Q : What is Inter-arrival times

    Inter-arrival times:A) Requests arrive randomly, often separated by small time intervals with few long separations among themB) The time until the next arrival is independent of when the last arrival occurredC) Coro

  • Q : Simplified demonstration of Littles Law

    Simplified demonstration of Little’s Law:

    Q : Calculate the p- value Medical tests

    Medical tests were conducted to learn about drug-resistant tuberculosis. Of 284 cases tested in New Jersey, 18 were found to be drug- resistant. Of 536 cases tested in Texas, 10 were found to be drugresistant. Do these data indicate that New Jersey has a statisti

  • Q : Data Description 1. If the mean number

    1. If the mean number of hours of television watched by teenagers per week is 12 with a standard deviation of 2 hours, what proportion of teenagers watch 16 to 18 hours of TV a week? (Assume a normal distribution.) A. 2.1% B. 4.5% C. 0.3% D. 4.2% 2. The probability of an offender having a s

  • Q : OIL I need to product when oil will

    I need to product when oil will finish time (by years) for 6 countries if the keep their production (per day) in the same level. So, the 6 countries have fixed reserves and production 1. statistics for Bahrain Crude oil reserves (million barrels) = 124.6 be careful in million Crude oil producti

  • Q : MANOVA and Reflection Activity

    Activity 10:   MANOVA and Reflection   4Comparison of Multiple Outcome Variables This activity introduces you to a very common technique - MANOVA. MANOVA is simply an extension of an ANOV