--%>

Problem on mechanical efficiency of the pump

The oil pump is drawing 25 kW of electric power while pumping oil with ρ = 860 kg/m3 at a rate of 0.1 m3/s. The inlet and outlet diameters of the pipe are of 8 cm and 12 cm, respectively. When the pressure rise of oil in the pump is measured to be 250 kPa and the motor efficiency is 90%, then find out the mechanical efficiency of the pump. Taking kinetic energy correction factor to be 1.05.

598_mechanical eff.jpg

E

Expert

Verified

Given:

Inlet Dia, Di = 8 cm = 8 x 10-2 m
Outlet Dia, Do = 12cm = 12 x10-2m

Density of oil,  δ = 80Kg /m3

Flow rate Q = 0.1 m3/s

Pressure rise = 250KPa = 250 x10-3 Pa

Power supplied to the pump = 25Kw = 25 x 10-3 w

Motor efficiency = .90

Kinetic energy correction factor, α= 1.05

Inlet area Ai= Π/4 x D12=-Π/4 x (8 x 10-2)2 = 0.0804 m2
Outlet area A0= Π/4 x D02 = Π/4 x (12 x10-2)2= 0.1809 m2

Average evolution 
Vi = Q/Ai = 0.1/ 0.804 = 1.1235 m/s
V0 = Q/A0 = 0.1/ 0.1809 = 0.5526 m/s

A note of kinetic energy correction factor

K. E correction factor, α = (K. E /See based on actual velocity) / (K. E / See based on average velocity)

The factor α is used when the flow is viscous.

Applying Bernoulli’s equation at the inlet (i) i outlet (0) of the pump.

Pi/ δg + α1 Vi2/ 2g +zi + HP= P0 /δg +α2 Vo2/2g + Z0 + Hf .

Given  αi= α2= α= 1.05     (Z0 –Zi is considered negligible)
HP = head added by the pump
Hf = head loss due to friction

H= HP – Hf = P0–Pi / δg + α ( V02-V12)/ 2g
    = 250 x 103 / 1000 x 9.81 + 1.05 / 2 x 9.81 (0.55262  - 1.2435)
    = 25.42 m

Power of the pump PP= δg QH
            = 1000 x9.81x 0.1 25.42
            = 24934.85 w
            = 24.934Kw

Mechanical efficiency of the pump:

Case (1)  ηm = power output/power input = 24.934/ 25 = 99%
Case (2)  if the  motor is to get 25Kw  considering its efficiency  the supply should be of 25/ 0.9 KW

ηm = 24.934/ (25/0.9) = 89.67%

   Related Questions in Mechanical Engineering

  • Q : Problem on turbulent flow The

    The approximate equation for the velocity distribution in a rectangular channel with the turbulent flow is 655_turbulent flow.jpg

    Q : Problem on degree of freedom Draw a

    Draw a frequency-response curves for a damped single degree of freedom system subjected to a harmonic excitation under three different damping ratios. System has a natural frequency of ωn as the forcing frequency of the excitation is ω. Describe

  • Q : Causes and consequences of dynamic

    Discuss the causes and consequences of dynamic loading on structures based on two real examples. Support your discussion with proper diagrams or sketches. Your discussion shall include the time and location of the event, type and source of dynamic loa

  • Q : Laws of Thermodynamics Describe all the

    Describe all the laws of the Thermodynamics?

  • Q : Conformance to standards in product

    Conformance to standards and specifications: These are standards laid down by national and international authorities. For instance, in Canada there is the Standards Council of Canada (SCC). The United States has many standards bodies including MIL (US

  • Q : Excitation of Modes in Fiber A

    A multimode fiber is used to couple light into a single mode fiber. Both fibers have the same total diameter. Explain the coupling. Use equations, MATLAB, etc. if necessary. If an LED is used to excite a single mode fiber, explain the coupling of light to the fiber? U

  • Q : What is LILO What is meant by the term

    What is meant by the term LILO?

  • Q : Efficient design What is meant by ‘

    What is meant by ‘efficient design’? Explain.

  • Q : Problem on displacement response time

    (i) Formulate the equation of motion for the system shown in Figure below. List two assumptions made in this formulation. (ii) Find the response of this system at t = 3s. The system begins with the displacement of 5 cm and velocity

  • Q : Problem on pressure rise of a water tank

    The water level in a tank is about 20 m above the ground. A hose is joined to the bottom of the tank, and the nozzle in the end of the hose is pointed to straight up. The tank is at sea level, and the water surface is open to the environment. In the line leading from