--%>

Problem on mechanical efficiency of the pump

The oil pump is drawing 25 kW of electric power while pumping oil with ρ = 860 kg/m3 at a rate of 0.1 m3/s. The inlet and outlet diameters of the pipe are of 8 cm and 12 cm, respectively. When the pressure rise of oil in the pump is measured to be 250 kPa and the motor efficiency is 90%, then find out the mechanical efficiency of the pump. Taking kinetic energy correction factor to be 1.05.

598_mechanical eff.jpg

E

Expert

Verified

Given:

Inlet Dia, Di = 8 cm = 8 x 10-2 m
Outlet Dia, Do = 12cm = 12 x10-2m

Density of oil,  δ = 80Kg /m3

Flow rate Q = 0.1 m3/s

Pressure rise = 250KPa = 250 x10-3 Pa

Power supplied to the pump = 25Kw = 25 x 10-3 w

Motor efficiency = .90

Kinetic energy correction factor, α= 1.05

Inlet area Ai= Π/4 x D12=-Π/4 x (8 x 10-2)2 = 0.0804 m2
Outlet area A0= Π/4 x D02 = Π/4 x (12 x10-2)2= 0.1809 m2

Average evolution 
Vi = Q/Ai = 0.1/ 0.804 = 1.1235 m/s
V0 = Q/A0 = 0.1/ 0.1809 = 0.5526 m/s

A note of kinetic energy correction factor

K. E correction factor, α = (K. E /See based on actual velocity) / (K. E / See based on average velocity)

The factor α is used when the flow is viscous.

Applying Bernoulli’s equation at the inlet (i) i outlet (0) of the pump.

Pi/ δg + α1 Vi2/ 2g +zi + HP= P0 /δg +α2 Vo2/2g + Z0 + Hf .

Given  αi= α2= α= 1.05     (Z0 –Zi is considered negligible)
HP = head added by the pump
Hf = head loss due to friction

H= HP – Hf = P0–Pi / δg + α ( V02-V12)/ 2g
    = 250 x 103 / 1000 x 9.81 + 1.05 / 2 x 9.81 (0.55262  - 1.2435)
    = 25.42 m

Power of the pump PP= δg QH
            = 1000 x9.81x 0.1 25.42
            = 24934.85 w
            = 24.934Kw

Mechanical efficiency of the pump:

Case (1)  ηm = power output/power input = 24.934/ 25 = 99%
Case (2)  if the  motor is to get 25Kw  considering its efficiency  the supply should be of 25/ 0.9 KW

ηm = 24.934/ (25/0.9) = 89.67%

   Related Questions in Mechanical Engineering

  • Q : Problem on discharge head loss Water is

    Water is draining from the tank A to tank B. The elevation difference among the two tanks is 10 m. The pipe joining the two tanks has a sudden-expansion section as shown below. The cross-sectional area of the pipe from A is 8 cm2, and the area of the pipe f

  • Q : Deareator In Thermal Power Plant, Why

    In Thermal Power Plant, Why Deareator is placed at the Height?

  • Q : Problem on degree of freedom Draw a

    Draw a frequency-response curves for a damped single degree of freedom system subjected to a harmonic excitation under three different damping ratios. System has a natural frequency of ωn as the forcing frequency of the excitation is ω. Describe

  • Q : Problem related to pressure gauge Water

    Water flowing via the vertical pipe is illustrated below. Compute the required pipe diameter for the smaller pipe,‘d’,  given that the two pressure gauges read similar value.

    Q : Explain steam turbine diaphragm Steam

    Steam turbine diaphragm: Steam turbine includes of phases, number and size of the phases depends on the break horse-power of the turbine. The phase has set of moving and fixed blades. Moving blades are joined to th

  • Q : Define Mechanism Mechanism : The

    Mechanism: The mechanism is a system of moving parts which changes an input motion and force into the desired output force and motion.

  • Q : Radial bearings Explain the importance

    Explain the importance to remember about the radial bearings?

  • Q : Fly ball governor in the hydrualic

    How the fly ball governor is used along with the hydraulic control?

  • Q : Problem related to the value of the

    Water flows via a pipe of about 300 mm diameter at the rate of 66 L/s. Evaluate the value of the manometer reading, ‘h’. The Specific gravity of manometer liquid is taken as 0.8.  

  • Q : Unilateral and Bilateral Tolerance

    Explain difference between the Unilateral and Bilateral Tolerance?