--%>

Problem on mechanical efficiency of the pump

The oil pump is drawing 25 kW of electric power while pumping oil with ρ = 860 kg/m3 at a rate of 0.1 m3/s. The inlet and outlet diameters of the pipe are of 8 cm and 12 cm, respectively. When the pressure rise of oil in the pump is measured to be 250 kPa and the motor efficiency is 90%, then find out the mechanical efficiency of the pump. Taking kinetic energy correction factor to be 1.05.

598_mechanical eff.jpg

E

Expert

Verified

Given:

Inlet Dia, Di = 8 cm = 8 x 10-2 m
Outlet Dia, Do = 12cm = 12 x10-2m

Density of oil,  δ = 80Kg /m3

Flow rate Q = 0.1 m3/s

Pressure rise = 250KPa = 250 x10-3 Pa

Power supplied to the pump = 25Kw = 25 x 10-3 w

Motor efficiency = .90

Kinetic energy correction factor, α= 1.05

Inlet area Ai= Π/4 x D12=-Π/4 x (8 x 10-2)2 = 0.0804 m2
Outlet area A0= Π/4 x D02 = Π/4 x (12 x10-2)2= 0.1809 m2

Average evolution 
Vi = Q/Ai = 0.1/ 0.804 = 1.1235 m/s
V0 = Q/A0 = 0.1/ 0.1809 = 0.5526 m/s

A note of kinetic energy correction factor

K. E correction factor, α = (K. E /See based on actual velocity) / (K. E / See based on average velocity)

The factor α is used when the flow is viscous.

Applying Bernoulli’s equation at the inlet (i) i outlet (0) of the pump.

Pi/ δg + α1 Vi2/ 2g +zi + HP= P0 /δg +α2 Vo2/2g + Z0 + Hf .

Given  αi= α2= α= 1.05     (Z0 –Zi is considered negligible)
HP = head added by the pump
Hf = head loss due to friction

H= HP – Hf = P0–Pi / δg + α ( V02-V12)/ 2g
    = 250 x 103 / 1000 x 9.81 + 1.05 / 2 x 9.81 (0.55262  - 1.2435)
    = 25.42 m

Power of the pump PP= δg QH
            = 1000 x9.81x 0.1 25.42
            = 24934.85 w
            = 24.934Kw

Mechanical efficiency of the pump:

Case (1)  ηm = power output/power input = 24.934/ 25 = 99%
Case (2)  if the  motor is to get 25Kw  considering its efficiency  the supply should be of 25/ 0.9 KW

ηm = 24.934/ (25/0.9) = 89.67%

   Related Questions in Mechanical Engineering

  • Q : Efficient design What is meant by ‘

    What is meant by ‘efficient design’? Explain.

  • Q : Mechanical design for manufacturing A

    A stone quarry in a remote part of the world requires that stone blocks of 3 cubic feet in volume be moved up a 50 ft long ramp which is inclined at 30 degrees. Since the location is remote, the blocks must be moved usng human power. On a continuous basis, human power

  • Q : Carburetion A carburetor's primary

    A carburetor's primary function is to mix proper proportions is?

  • Q : Problem on flow rates Water flows at 40

    Water flows at 40 m/s from the jet of area of cross-section of 0.008 m2 on to a flat plate as shown in the figure. Determine the force F normal to the plate, and also the flow rates out of the plate.

    Q : Define spinning jenny Spinning jenny:

    Spinning jenny: It is a multi-spool spinning wheel. It was invented in the year 1764 by James Hargreaves in Stanhill, close to Blackburn, Lancashire in the north west of England (though Thomas Highs is another candidate recognized as inventor).

  • Q : Powder Technology Explain the term

    Explain the term Powder Technology?

  • Q : Problem on pressure rise of a water tank

    The water level in a tank is about 20 m above the ground. A hose is joined to the bottom of the tank, and the nozzle in the end of the hose is pointed to straight up. The tank is at sea level, and the water surface is open to the environment. In the line leading from

  • Q : Problem related to mass flow rate Water

    Water flows via a control volume as illustrated in the figure below. At Section (1) the diameter is 40 mm and the velocity profile is given by the V(r) = 10 (4 – r2) m/s, here r is the  distance from the centerline. At Section (2) the mass flow r

  • Q : Difference between pressure vessel &

    Difference between pressure vessel & column: The Pressure vessels (cylinder or tank) are utilized to store fluids under pressure. If the pressure vessel are design in the form of column to separate the gas at u

  • Q : Excitation of Modes in Fiber A

    A multimode fiber is used to couple light into a single mode fiber. Both fibers have the same total diameter. Explain the coupling. Use equations, MATLAB, etc. if necessary. If an LED is used to excite a single mode fiber, explain the coupling of light to the fiber? U