--%>

Problem on heat of sublimation

Using the vapor pressure data provided below, estimate

i) the heat of sublimation of ice,

ii) the heat of vaporization of water,

iii) the heat of fusion of ice and compare your estimate with the published value of 6010 J/moL

iv) the triple point of water (pressure and temperature). Solve the nonlinear.

                                           T(°C)                             Vapor Pressure (mm Hg)
Ice                                       -4                                            3.280
                                            -2                                            3.880
Water                                   +2                                            5.294
                                            +4                                            6.101

E

Expert

Verified

At 1 atm pressure, ice melts at 0°C

density of ice = 920 kg/m3
density of liquid water = 997 kg/m3

Now using the Clapeyron equation

dP/dT = LP/RT2  [ where Vg>>>Vl]

On integration:

Ln[P1/P2] = -L/R[ 1/T1 -1/T2]

Ln(3.880/3.280)= -L/R [ 1/271-1/269]

So Ice  L = ΔH sublimation = - 50911.5 J/mol =-50.9115KJ/mole

Similarly for water L = ΔH vap =- 44929.9 J/Mole =- 44.929 KJ/mole

Now At triple point Ice /Water /Saturate water Vap co-exists Now using the Thermo concept at triple point 

ΔH sublimation = ΔH vap + ?H fusion

Similarly  at triple vap pressure of water = vap pressure of ice

LnP = ln(3.880)-50911.5/8.3145[1/T – 1/271] = ln(5.294)-44929.9/8.3145[1/T-1/275]

So Solving for T we get T =273.1297K

Now Solving for P we get

LnP = ln(3.880)-50911.5/8.3145[1/273.129 – 1/271]
LnP = 1.532014

So P = 3.589546 mmHg

   Related Questions in Chemical Engineering

  • Q : Matlab/Simulink assignment Modeling eye

    Modeling eye movements is commonly performed in the Matlab/Simulink pacakage. Based on the Physiological evidence, oculomotor plants have been designed to simulate various eye movements. Choose two eye movement models, one for saccades and the other for pursuit, and simulate the following amplitudes

  • Q : Problem on steam flow in a pipe A

    A stream of steam at 15 bar and 300 oC is used to produce work using a steam turbine. a. Before the turbine, steam flows in a pipe (4 cm in diameter) at a mass flow rate of 3 g/s. Calculate the mean velocity in the pipe

  • Q : Problem on weight fraction A gas

    A gas contains 350 ppm of H2S in CO2 at 72°F and 1.53 atm pressure. If the gas is liquified, what is the weight fraction H2S?

  • Q : Problem on frictional losses A stream

    A stream of propane is throttled from 4.298 bar and 450 K to 0.22 bar. This process is irreversible due to frictional losses at the nozzle. a. In words or equations, why are frictional losses irreversible?

    Q : Rate of flow of nitrogen The feed to an

    The feed to an ammonia synthesis reactor contain 25 mole% nitrogen and the balance hydrogen. The flow rate of the stream is 3000 kg/hr. Calculate the rate of flow of nitrogen into the reactor in kg/hr. (Hint: First calculate the average molecular weight of the mixture).

  • Q : Calculating flow rate of nitrogen The

    The feed of an ammonia synthesis reactor is 25% (lbmole) nitrogen with the balance hydrogen. The flow rate is 3000 kg/h at 65°C and 95 bar. Calculate the flow rate of nitrogen to the reactor in kg/hr.

  • Q : I need to solve the material and energy

    I need to solve the material and energy balance for the att.

  • Q : Problem on heat of sublimation Using

    Using the vapor pressure data provided below, estimatei) the heat of sublimation of ice,ii) the heat of vaporization of water,iii) the heat of fusion of ice and compare your estimate with the published value of 6010 J/moLiv) the triple point of wate

  • Q : Mass transfer adsorption how to

    how to calculate amount of ammonia adsorbed per kg of adsobent in ammonia calcium chloride adsorption process?

  • Q : Problem on heat required for process A

    A steady-state flow process is used to heat methanol in a tank. The incoming stream is at 2 bar and 25 oC and has a flow rate of 5 kg/s. The outgoing stream is at 1 bar, 100 oC. Heating is provided by a heating coil immersed in a tank. Given the