--%>

Problem on heat of sublimation

Using the vapor pressure data provided below, estimate

i) the heat of sublimation of ice,

ii) the heat of vaporization of water,

iii) the heat of fusion of ice and compare your estimate with the published value of 6010 J/moL

iv) the triple point of water (pressure and temperature). Solve the nonlinear.

                                           T(°C)                             Vapor Pressure (mm Hg)
Ice                                       -4                                            3.280
                                            -2                                            3.880
Water                                   +2                                            5.294
                                            +4                                            6.101

E

Expert

Verified

At 1 atm pressure, ice melts at 0°C

density of ice = 920 kg/m3
density of liquid water = 997 kg/m3

Now using the Clapeyron equation

dP/dT = LP/RT2  [ where Vg>>>Vl]

On integration:

Ln[P1/P2] = -L/R[ 1/T1 -1/T2]

Ln(3.880/3.280)= -L/R [ 1/271-1/269]

So Ice  L = ΔH sublimation = - 50911.5 J/mol =-50.9115KJ/mole

Similarly for water L = ΔH vap =- 44929.9 J/Mole =- 44.929 KJ/mole

Now At triple point Ice /Water /Saturate water Vap co-exists Now using the Thermo concept at triple point 

ΔH sublimation = ΔH vap + ?H fusion

Similarly  at triple vap pressure of water = vap pressure of ice

LnP = ln(3.880)-50911.5/8.3145[1/T – 1/271] = ln(5.294)-44929.9/8.3145[1/T-1/275]

So Solving for T we get T =273.1297K

Now Solving for P we get

LnP = ln(3.880)-50911.5/8.3145[1/273.129 – 1/271]
LnP = 1.532014

So P = 3.589546 mmHg

   Related Questions in Chemical Engineering

  • Q : Problem on empirical van Laar equation

    At atmospheric pressure ethyl acetate and ethyl alcohol form an azeotropic mixture containing 53.9% mole of ethyl acetate and boiling at 71.8°C. a) Estimate the values of A & B in the empirical van Laar equation

  • Q : Materials and energy balance you look

    you look up the specific gravity of 96% H2SO4 and find it is 1.858.calculate the weight

  • Q : Problem on flow rate of natural gas

    Natural Gas is flowing through a 10 inch schedule 40 pipe. The gas is at 109°F and 7.3 psig. The outside air temperature is 92°F. If the flow rate of the gas is 8,000 SCFM: What is the flow rate in lb/hr?

  • Q : Problem on entropy A heater (heat

    A heater (heat source temperature = 527 K) and turbine are connected in series as shown below:

    Q : I need to solve the material and energy

    I need to solve the material and energy balance for the att.

  • Q : Problem on molar flow rate I) Sulphur

    I) Sulphur dioxide (SO2) with a volumetric flow rate 5000cm3/s at 1 bar and 1000C is mixed with a second SO2 stream flowing at 2500cm3/s at 2 bar and 200C. The process occurs at steady state. You may as

  • Q : Matlab/Simulink assignment Modeling eye

    Modeling eye movements is commonly performed in the Matlab/Simulink pacakage. Based on the Physiological evidence, oculomotor plants have been designed to simulate various eye movements. Choose two eye movement models, one for saccades and the other for pursuit, and simulate the following amplitudes

  • Q : Calculating adiabatic flame temperature

    Calculate the adiabatic flame temperature of acetylenes gas at a pressure of 1 bar under the following conditions. The reactants are initially at 298K. Assume that the acetylene reacts completely to form CO2 and H2O:

    Q : Problem on Clausius-Clapeyron equation

    The Clausius-Clapeyron equation gives us an expression for dP/dT. Now we will derive an analog to the Clausius-Clapeyron equation by obtaining an expression for dT/dµ when two phases are at equilibrium. For simplicity, let’s derive this fo

  • Q : Estimating solubility of oxygen in water

    The Henry's law constant for oxygen in water is as follows: Temperature, °C                     0              &nbs