--%>

Problem on Chebyshevs theorem

1. Prove that the law of iterated expectations for continuous random variables.

2. Prove that the bounds in Chebyshev's theorem cannot be improved upon. I.e., provide a distribution which satisfies the bounds exactly for k ≥1, show that it satisfies the bounds exactly, and draw its PDF. Then describe why, logically, this is similar as providing that the bounds cann't be improved upon.

3. In a logit model ln (p(X;Z) / (1-p(X;Z))  ) = α + β1X + β2Z, explain why the marginal effect of X on Y is a function of Z, even though there is no interaction term between Z and X is present.

   Related Questions in Advanced Statistics

  • Q : Probability of signaling Quality

    Quality control: when the output of a production process is stable at an acceptable standard, it is said to be "in control?. Suppose that a production process has been in control for some time and that the proportion of defectives has been 0.5. as a means of monitorin

  • Q : Bayesian Point Estimation What are the

    What are the Bayesian Point of estimation and what are the process of inference in Bayesian statistics?

  • Q : Statistics A nurse practitioner working

    A nurse practitioner working in a dermatology clinic is studying the efficacy of tretinoin in treating women’s post partum abdominal stretch marks. From a sample of 15 women, the mean reduction of stretch mark score is -0.33 with a sample standard deviation of 2.46. Describe what happens to the c

  • Q : MANOVA and Reflection Activity 10:

    Activity 10: MANOVA and Reflection 4Comparison of Multiple Outcome Variables This activity introduces you to a very common technique - MANOVA. MANOVA is simply an extension of an ANOVA and allows for the comparison of multiple outcome variables (again, a very common situation in research a

  • Q : Random variables Random variables with

    Random variables with zero correlation are not necessarily independent. Give a simple example.    

  • Q : Binomial distribution 1) A Discrete

    1) A Discrete random variable can be described as Binomial distribution if is satisfies four conditions, Briefly discuss each of these conditions2) A student does not study for a multiple choice examination and decides to guess the correct answers, If the

  • Q : Null hypothesis In testing the null

    In testing the null hypothesis H0: P=0.6 vs the alternative H1 : P < 0.6 for a binomial model b(n,p), the rejection region of a test has the structure X ≤ c, where X is the number of successes in n trials. For each of the following tests, d

  • Q : Problem on utility funtion probability

    Suppose that your utility, U, is a function only of wealth, Y, and that U(Y) is as drawn below. In this graph, note that U(Y) increases linearly between points a and b.  Suppose further that you do not know whether or not you

  • Q : Probability of winning game Monte Carlo

    Monte Carlo Simulation for Determining Probabilities 1. Determining the probability of winning at the game of craps is difficult to solve analytically. We will assume you are playing the `Pass Line.'  So here is how the game is played: The shooter rolls a pair of

  • Q : Probability on expected number of days

    It doesn't rain often in Tucson. Yet, when it does, I want to be prepared. I have 2 umbrellas at home and 1 umbrella in my office. Before I leave my house, I check if it is raining. If it is, I take one of the umbrellas with me to work, where I would leave it. When I