--%>

Problem on Adiabatic expansion

Calculate the change in entropy for the system for each of the following cases. Explain the sign that you obtain by a physical argument

a) A gas undergoes a reversible, adiabatic expansion from an initial state at 500 K, 1 MPa, and 8.314 L to a final volume of 16.628 L.

b) One mole of methane vapor is condensed at its boiling point, 111 K; Δhv = 8.2 [kJ/mol].

c) One mole of liquid water is cooled from 100°C to 0°C. Take the average heat capacity of water to be 4.2 JK-1g-1.

d) Two blocks of the same metal with equal mass are at different temperatures, 200°C and 100°C. These blocks are brought together and allowed to come to the same temperature. Assume that these blocks are isolated from their surroundings. The average heat capacity of the metal is 24 JK-1mol-1.

E

Expert

Verified

(a) Since the heat transfer, ΔQ = 0, in reversible adiabatic process, the entropy change,

ΔS = ΔQ/T = 0

(b) ΔS = Δhv/T = (-8.2 kJ/mol)/111 K = -0.074 kJ/(mol.K) = -74 J/(mol.K)

Since one mol is condensed, -74J/K is the entropy change, and this heat taken up by surrounding whose entropy change is positive 74J/K, and hence the entropy change of system plus surrounding is zero, in confirmation with the second law of thermodynamics.

(c) ΔS = ΔQ/T = ∫cp,avgdT/T = cp,avg ∫dT/T = cp,avg ln (T2/T1) = 4.2 ln(273/373) = = -1.31 J/(gK).

But we have 1 mol of water, i.e. 18 gm of water. Hence ΔS = -1.31 x 18 = -23.58 J/K

The negative sign implies that heat is lost or transferred from system to surrounding.

In other words water is cooled, by transferring the heat, hence the change in entropy is negative, while the surrounding gain the same amount of heat and for it the change in entropy is positive, hence the total change in entropy is zero, i.e. System + Surroundings.

(d) Let the equilibrium temperature be T,

mCp(200 – T) = mCp(T – 100)
(200 – T) = (T – 100)
T = 150oC

Total change in entropy of the system,

        = change in entropy of 1st block + change in entropy of 2nd block

        = cp ln (T2/T1) + cp ln (T2/T1)

        = 24ln (423/473) + 24ln (423/373)

        = 0.338 J/mol.K

Thus the entropy change is positive in this case, implying there are more configurations when the two blocks are allowed to interact.

   Related Questions in Chemistry

  • Q : BASIC CHARACTER OF AMINES IN GAS PHASE,

    IN GAS PHASE, BASICITIES OF THE AMINES IS JUST OPPOSITE TO BASICITY OF AMINES IN AQEUOUS PHASE .. EXPLAIN

  • Q : Group Cations Explain how dissolving

    Explain how dissolving the Group IV carbonate precipitate with 6M CH3COOH, followed by the addition of extra acetic acid, establishes a buffer with a pH of approximately

  • Q : Molarity in Nacl The molarity of 0.006

    The molarity of 0.006 mole of NaCl in 100 solutions will be: (i) 0.6 (ii) 0.06 (iii) 0.006 (iv) 0.066 (v) None of theseChoose the right answer from above.Answer: The right answer is (ii) M = n/ v(

  • Q : Normality of acetic acid Give me answer

    Give me answer of this question. The normality of 10% (weight/volume) acetic acid is: (a)1 N (b)10 N (c)1.7 N (d) 0.83 N

  • Q : Define the term oxidizing agent Briefly

    Briefly define the term oxidizing agent?

  • Q : Dipole attractions-London dispersion

    Describe how dipole attractions, London dispersion forces and the hydrogen bonding identical?

  • Q : Molar concentration Choose the right

    Choose the right answer from following. Molar concentration (M) of any solution : a) No. of moles of solute/Volume of solution in litre (b) No. of gram equivalent of solute / volume of solution in litre (c) No. of moles os solute/ Mass of solvent in kg  (

  • Q : Problem on colligative properties

    Choose the right answer from following. The magnitude of colligative properties in all colloidal dispersions is : (a) Lowerthan solution (b)Higher than solution(c) Both (d) None

  • Q : Calculating number of moles from

    Choose the right answer from following. If 0.50 mol of CaCl2 is mixed with 0.20 mol of Na3PO4, the maximum number of moles of Ca3 (PO2)2 which can be formed: (a) 0.70 (b) 0.50 (c) 0.20 (d) 0.10

  • Q : Modern periodic table and Mendeleevs

    Differentiate between the modern periodic table and Mendeleevs table?