--%>

Problem on Adiabatic expansion

Calculate the change in entropy for the system for each of the following cases. Explain the sign that you obtain by a physical argument

a) A gas undergoes a reversible, adiabatic expansion from an initial state at 500 K, 1 MPa, and 8.314 L to a final volume of 16.628 L.

b) One mole of methane vapor is condensed at its boiling point, 111 K; Δhv = 8.2 [kJ/mol].

c) One mole of liquid water is cooled from 100°C to 0°C. Take the average heat capacity of water to be 4.2 JK-1g-1.

d) Two blocks of the same metal with equal mass are at different temperatures, 200°C and 100°C. These blocks are brought together and allowed to come to the same temperature. Assume that these blocks are isolated from their surroundings. The average heat capacity of the metal is 24 JK-1mol-1.

E

Expert

Verified

(a) Since the heat transfer, ΔQ = 0, in reversible adiabatic process, the entropy change,

ΔS = ΔQ/T = 0

(b) ΔS = Δhv/T = (-8.2 kJ/mol)/111 K = -0.074 kJ/(mol.K) = -74 J/(mol.K)

Since one mol is condensed, -74J/K is the entropy change, and this heat taken up by surrounding whose entropy change is positive 74J/K, and hence the entropy change of system plus surrounding is zero, in confirmation with the second law of thermodynamics.

(c) ΔS = ΔQ/T = ∫cp,avgdT/T = cp,avg ∫dT/T = cp,avg ln (T2/T1) = 4.2 ln(273/373) = = -1.31 J/(gK).

But we have 1 mol of water, i.e. 18 gm of water. Hence ΔS = -1.31 x 18 = -23.58 J/K

The negative sign implies that heat is lost or transferred from system to surrounding.

In other words water is cooled, by transferring the heat, hence the change in entropy is negative, while the surrounding gain the same amount of heat and for it the change in entropy is positive, hence the total change in entropy is zero, i.e. System + Surroundings.

(d) Let the equilibrium temperature be T,

mCp(200 – T) = mCp(T – 100)
(200 – T) = (T – 100)
T = 150oC

Total change in entropy of the system,

        = change in entropy of 1st block + change in entropy of 2nd block

        = cp ln (T2/T1) + cp ln (T2/T1)

        = 24ln (423/473) + 24ln (423/373)

        = 0.338 J/mol.K

Thus the entropy change is positive in this case, implying there are more configurations when the two blocks are allowed to interact.

   Related Questions in Chemistry

  • Q : Reducible Representations The number of

    The number of times each irreducible representation occurs in a reducible representation can be calculated.Consider the C2v point group as described or Appendix C. you can see that (1) sum of

  • Q : Why acetic has less conductivity than

    Illustrate the reason, why acetic has less conductivity than Hcl?

  • Q : Question 6 A student was analyzing an

    A student was analyzing an unknown containing only Group IV cations. When the unknown was treated with 3M (NH4)2CO3 solution, a white precipitate formed. Because the acetic acid bottle was empty, the student used 6M HCl to dissolve the precipitate. Following the procedure of this experiment, the stu

  • Q : Effect of addition of mercuric iodide

    Give me answer of this question. When mercuric iodide is added to the aqueous solution of potassium iodide, the:(a) Freezing point is raised (b) Freezing point is lowered (c) Freezing point does not change (d) Boiling point does not change

  • Q : What are various structure based

    This classification of polymers is based upon how the monomeric units are linked together. Based on their structure, the polymers are classified as: 1. Linear polymers: these are the polymers in which monomeric units are linked together to form long straight c

  • Q : Molecular substances what are the most

    what are the most important inorganic molecular substances for living beings?

  • Q : What type of bond does HCl encompass

    What type of bond does HCl encompass? Describe briefly?

  • Q : Problem on equilibrium composition The

    The catalytic dehydrogenation of 1-butene to 1,3-butadiene, C4H8(g) = C4H6(g)+H2(g) is carried out at 900 K and 1 atm.

    Q : Molecular mass from Raoults law Provide

    Provide solution of this question. Determination of correct molecular mass from Raoult's law is applicable to: (a) An electrolyte in solution (b) A non-electrolyte in a dilute solution (c) A non-electrolyte in a concentrated solution (d) An electrolyte in a liquid so

  • Q : Problem on distribution law The

    The distribution law is exerted for the distribution of basic acid among: (i) Water and ethyl alcohol (ii) Water and amyl alcohol (iii) Water and sulphuric acid (iv) Water and liquor ammonia What is the right answer.