--%>

Problem on Adiabatic expansion

Calculate the change in entropy for the system for each of the following cases. Explain the sign that you obtain by a physical argument

a) A gas undergoes a reversible, adiabatic expansion from an initial state at 500 K, 1 MPa, and 8.314 L to a final volume of 16.628 L.

b) One mole of methane vapor is condensed at its boiling point, 111 K; Δhv = 8.2 [kJ/mol].

c) One mole of liquid water is cooled from 100°C to 0°C. Take the average heat capacity of water to be 4.2 JK-1g-1.

d) Two blocks of the same metal with equal mass are at different temperatures, 200°C and 100°C. These blocks are brought together and allowed to come to the same temperature. Assume that these blocks are isolated from their surroundings. The average heat capacity of the metal is 24 JK-1mol-1.

E

Expert

Verified

(a) Since the heat transfer, ΔQ = 0, in reversible adiabatic process, the entropy change,

ΔS = ΔQ/T = 0

(b) ΔS = Δhv/T = (-8.2 kJ/mol)/111 K = -0.074 kJ/(mol.K) = -74 J/(mol.K)

Since one mol is condensed, -74J/K is the entropy change, and this heat taken up by surrounding whose entropy change is positive 74J/K, and hence the entropy change of system plus surrounding is zero, in confirmation with the second law of thermodynamics.

(c) ΔS = ΔQ/T = ∫cp,avgdT/T = cp,avg ∫dT/T = cp,avg ln (T2/T1) = 4.2 ln(273/373) = = -1.31 J/(gK).

But we have 1 mol of water, i.e. 18 gm of water. Hence ΔS = -1.31 x 18 = -23.58 J/K

The negative sign implies that heat is lost or transferred from system to surrounding.

In other words water is cooled, by transferring the heat, hence the change in entropy is negative, while the surrounding gain the same amount of heat and for it the change in entropy is positive, hence the total change in entropy is zero, i.e. System + Surroundings.

(d) Let the equilibrium temperature be T,

mCp(200 – T) = mCp(T – 100)
(200 – T) = (T – 100)
T = 150oC

Total change in entropy of the system,

        = change in entropy of 1st block + change in entropy of 2nd block

        = cp ln (T2/T1) + cp ln (T2/T1)

        = 24ln (423/473) + 24ln (423/373)

        = 0.338 J/mol.K

Thus the entropy change is positive in this case, implying there are more configurations when the two blocks are allowed to interact.

   Related Questions in Chemistry

  • Q : Calculation of concentration of the

    Choose the right answer from following. 200ml of a solution contains 5.85 dissolved sodium chloride. The concentration of the solution will be(Na= 23: cl = 35.5 ) (a) 1 molar (b) 2 molar (c) 0.5 molar (d) 0.25 molar

  • Q : Liquid Vapour Free Energies The free

    The free energy of a component of a liquid solution is equal to its free energy in the equilibrium vapour.Partial molal free energies let us deal with the free energy of the components of a solution. We use these free energies, or simpler concentration ter

  • Q : Problem on vapor-liquid equilibrium Two

    Two tanks which contain water are connected to each other through a valve. The initial conditions are as shown (at equilibrium): 683_tank question.jpg

  • Q : Concentration of Calcium carbonate Help

    Help me to go through this problem. 1000 gms aqueous solution of CaCO3 contains 10 gms of carbonate. Concentration of the solution is : (a)10 ppm (b)100 ppm (c)1000 ppm (d)10000 ppm

  • Q : Problem on endothermic or exothermic At

    At low temperatures, mixtures of water and methane can form a hydrate (i.e. a solid containing trapped methane). Hydrates are potentially a very large source of underground trapped methane in the pole regions but are a nuisance when they form in pipelines and block th

  • Q : What is laser and explain its working?

    Laser action relies on a non-Boltzmann population inversion formed by the absorption of radiation and vibrational deactivation that forms a long lived excited electronic state. An excited state molecule can move to a lower energy state or return to the

  • Q : How molecule-molecule collisions takes

    An extension of the kinetic molecular theory of gases recognizes that molecules have an appreciable size and deals with molecule-molecule collisions. We begin studies of elementary reactions by investigating the collisions b

  • Q : Define Virial Equation The constant of

    The constant of vander Waal's equation can be related to the coefficients of the virial equation.  Vander Waal's equation provides a good overall description of the real gas PVT behaviour. Now let us

  • Q : BASIC CHARACTER OF AMINES IN GAS PHASE,

    IN GAS PHASE, BASICITIES OF THE AMINES IS JUST OPPOSITE TO BASICITY OF AMINES IN AQEUOUS PHASE .. EXPLAIN

  • Q : Illustrate the Lewis Dot Structure

    Illustrate the Lewis Dot Structure for the CH4O.