--%>

Problem on Adiabatic expansion

Calculate the change in entropy for the system for each of the following cases. Explain the sign that you obtain by a physical argument

a) A gas undergoes a reversible, adiabatic expansion from an initial state at 500 K, 1 MPa, and 8.314 L to a final volume of 16.628 L.

b) One mole of methane vapor is condensed at its boiling point, 111 K; Δhv = 8.2 [kJ/mol].

c) One mole of liquid water is cooled from 100°C to 0°C. Take the average heat capacity of water to be 4.2 JK-1g-1.

d) Two blocks of the same metal with equal mass are at different temperatures, 200°C and 100°C. These blocks are brought together and allowed to come to the same temperature. Assume that these blocks are isolated from their surroundings. The average heat capacity of the metal is 24 JK-1mol-1.

E

Expert

Verified

(a) Since the heat transfer, ΔQ = 0, in reversible adiabatic process, the entropy change,

ΔS = ΔQ/T = 0

(b) ΔS = Δhv/T = (-8.2 kJ/mol)/111 K = -0.074 kJ/(mol.K) = -74 J/(mol.K)

Since one mol is condensed, -74J/K is the entropy change, and this heat taken up by surrounding whose entropy change is positive 74J/K, and hence the entropy change of system plus surrounding is zero, in confirmation with the second law of thermodynamics.

(c) ΔS = ΔQ/T = ∫cp,avgdT/T = cp,avg ∫dT/T = cp,avg ln (T2/T1) = 4.2 ln(273/373) = = -1.31 J/(gK).

But we have 1 mol of water, i.e. 18 gm of water. Hence ΔS = -1.31 x 18 = -23.58 J/K

The negative sign implies that heat is lost or transferred from system to surrounding.

In other words water is cooled, by transferring the heat, hence the change in entropy is negative, while the surrounding gain the same amount of heat and for it the change in entropy is positive, hence the total change in entropy is zero, i.e. System + Surroundings.

(d) Let the equilibrium temperature be T,

mCp(200 – T) = mCp(T – 100)
(200 – T) = (T – 100)
T = 150oC

Total change in entropy of the system,

        = change in entropy of 1st block + change in entropy of 2nd block

        = cp ln (T2/T1) + cp ln (T2/T1)

        = 24ln (423/473) + 24ln (423/373)

        = 0.338 J/mol.K

Thus the entropy change is positive in this case, implying there are more configurations when the two blocks are allowed to interact.

   Related Questions in Chemistry

  • Q : What is solvent dielectric effect?

    Ionic dissociation depends on the dielectric constant of the solvent.The Arrhenius that ions are in aqueous solutions in equilibrium with parent molecular species allows many of the properties of ionic solutions to be understood. But difficulties began to

  • Q : Show your calculations Superphosphate

    Superphosphate has the formulae: CaH4 (PO4)2H2).  Calculate the percentage of phosphorus in this chemical.  Show your calculations  (around ten lines);  also Work out how to make up a nutrient mixtur

  • Q : Vant Hoff factor The Van't Hoff factor

    The Van't Hoff factor of the compound K3Fe(CN)6 is: (a) 1  (b) 2  (c) 3  (d) 4  Answer: (d) K3[Fe(CN)6] → 3K+

  • Q : How haloalkanes are prepared from

    This is the common method for preparing haloalkanes in laboratory. Alcohols can be converted to haloalkanes by substitution of - OH group with a halogen atom. Different reagents can be used to get haloa

  • Q : Calculation of concentration of the

    Choose the right answer from following. 200ml of a solution contains 5.85 dissolved sodium chloride. The concentration of the solution will be(Na= 23: cl = 35.5 ) (a) 1 molar (b) 2 molar (c) 0.5 molar (d) 0.25 molar

  • Q : Short note on the function of

    Write down a short note on the function of mitochondria?

  • Q : Entropy is entropy on moleculare basis

    is entropy on moleculare basis relates to the tras.,vib.,and rotational motions?

  • Q : Isotonic Solutions Which one of the

    Which one of the following pairs of solutions can we expect to be isotonic at the same temperature:(i) 0.1M Urea and 0.1M Nacl  (ii) 0.1M Urea and 0.2M Mgcl2  (iii) 0.1M Nacl and 0.1M Na2SO4  (iv) 0.1M Ca(NO3<

  • Q : Importance of organic chemistry

    Describe the importance of organic chemistry?

  • Q : Vapour pressure of benzene Give me

    Give me answer of this question. The vapour pressure of benzene at a certain temperature is 640mm of Hg. A non-volatile and non-electrolyte solid weighing 2.175g is added to 39.08g of benzene. The vapour pressure of the solution is 600,mm of Hg . What is the mo