--%>

Probability on expected number of days

It doesn't rain often in Tucson. Yet, when it does, I want to be prepared. I have 2 umbrellas at home and 1 umbrella in my office. Before I leave my house, I check if it is raining. If it is, I take one of the umbrellas with me to work, where I would leave it. When I go back home, I check if it is raining. If it is, I take one of the umbrellas with me home; therefore, the number of umbrellas at my house and in my office changes with time. The probability of rain is 0.1 every time I leave either my office or my house. The event of rain is independent of location and what happened in the past. Find the expected number of days before I run out of umbrellas where I am and it is raining outside. Also find the probability that I am home when that happens.

E

Expert

Verified

The person has 2 umbrellas at home and 1 in office. Also the probability of raining is independent of other factors and is equal to 0.1.

Now let us find the probability distribution of
X: Number of days before he running out of umbrellas.

Now X can take values from 0,1,2,3,..

Let us find the probability X=0, Now since he have 2 umbrellas at home and one at office, this probability will be zero.

Now let us find the probability x=1, now here we are interested in finding the probability that he runs without umbrella on second day, this will happen in following manner.

When he will go office there is no rain, so probability is 0.9, now on returning there is rain with prob 0.1 now on second day leaving office there is no raining with 0.9 and at the time of return it rains with 0.1

Hence total probability is .9*.1*.9*.1

Now let us find the probability x=2, now here we are interested in finding the probability that he runs without umbrella on second day, this will happen in following manner.

This probability will be .1*.9*.1*.9*.1  (The probabilities are arranged according to event)
Now let us find the probability x=3, now here we are interested in finding the probability that he runs without umbrella on second day, this will happen in following manner.

The probability is .9*.1*.1*.1*.9*.1

The probability that more x ≥ 4 will be 1 minus all these probabilities

1053_probability.jpg

Hence the expected number of days is 3.97,

Means on an average more than 3 days required to run without umbrella.

   Related Questions in Advanced Statistics

  • Q : Analyse the statistics of the data

    Assigment Question Select any two manufacturing companies and formulate the cost and revenue functions of the companies. analyse the statistics of the data and then sketch the functions and determine their breakeven points. (Note: You are required to interview the production and sales manag

  • Q : Discrete and continuous data

    Distinguish between discrete and continuous data in brief.

  • Q : Bayesian Point Estimation What are the

    What are the Bayesian Point of estimation and what are the process of inference in Bayesian statistics?

  • Q : Variation what are the advantages and

    what are the advantages and disadvantages of seasonal variation

  • Q : Probability problem A) What is the

    A) What is the probability of getting the following sequence with a fair die (as in dice):B) What is the probability of getting the same sequence with a die that is biased in the following way: p(1)=p(2)=p(3)=p(4)=15%;

  • Q : Grouped Frequency Distributions Grouped

    Grouped Frequency Distributions: Guidelines for classes: A) There must be between 5 to 20 classes. B) The class width must be an odd number. This will assure that the class mid-points are integers rather than decimals. C) The classes should be mutually exclusive. This signifies that no data valu

  • Q : Components of time series Name and

    Name and elaborate the four components of time series in brief.

  • Q : Correlation Define the term Correlation

    Define the term Correlation and describe Correlation formula in brief.

  • Q : Calculate confidence interval A nurse

    A nurse anesthetist was experimenting with the use of nitronox as an anesthetic in the treatment of children's fractures of the arm.  She treated 50 children and found that the mean treatment time (in minutes) was 26.26 minutes with a sample standard deviation of

  • Q : Probability Distributions and Data

    1. A popular resort hotel has 300 rooms and is usually fully booked. About 4% of the time a reservation is canceled before 6:00 p.m. deadline with no penalty. What is the probability that at least 280 rooms will be occupied? Use binomial distribution to find the exact value and the normal approxi