--%>

Poissons Ratio

Out of Rubber/Steel/Wood, which have higher Poissons Ratio?

E

Expert

Verified

When material is compressed in one direction, it automaitcally tends to expand within the other two directions that is perpendicular to the direction of compression. This mechanism is known as the Poisson effect. Poisson’s ratio is defined as a measure of Poisson effect.

For rubber = 0.5

For steel = 0.288

For wood < 0.2

Hence, the Poisson’s ratio is higher in the RUBBER.

   Related Questions in Mechanical Engineering

  • Q : Conformance to standards in product

    Conformance to standards and specifications: These are standards laid down by national and international authorities. For instance, in Canada there is the Standards Council of Canada (SCC). The United States has many standards bodies including MIL (US

  • Q : Synchronous generator & Generating units

    Question 1: Three generating units operating in parallel at 60 Hz have rating of 300, 500, and 600    MW and have speed-droop characteristics of 5, 4, and 3%, respectively. Due to a change in load, a

  • Q : Mechatronics Define the tem

    Define the tem Mechatronics and what are its elements?

  • Q : Decrease in entropy with termperature

    Explain that Entropy decreases along with the increase in its temperature?

  • Q : Modal Combination Rules What are the

    What are the Modal Combination Rules in order to determine the peak value of the total response?

  • Q : Convection Heat Transfer Please Solve

    Please Solve this problem Step by step, and the question is in the images.

  • Q : Rated Speed and Economic Speed Explain

    Explain difference between the Rated Speed and Economic Speed?

  • Q : Difference between pressure vessel &

    Difference between pressure vessel & column: The Pressure vessels (cylinder or tank) are utilized to store fluids under pressure. If the pressure vessel are design in the form of column to separate the gas at u

  • Q : Problem on damping coefficient Vertical

    Vertical suspension system of a car can be modeled as single degree of the freedom system. Consider that the car with mass m consists of four shock absorbers with equal stiffness and damping of k and c, corresspondingly: (a) Due to

  • Q : Undamped single degree of freedom (a)

    (a) The response for an undamped single degree of freedom system under free vibration is given as where ωn is the natural frequency and A and B are unknown that can be determined from the initial conditions. The response