--%>

Nuclear Physics Homework Help

NUCLEAR PHYSICS (PHY555) HOMEWORK #1

1. Calculate the luminosity for a beam of protons of 1 µA colliding with a stationary liquid hydrogen target 30 cm long. Compare this to a typical colliding beam luminosity of ∼1034 cm-2s-1.

2. An imaginary accelerator consists of colliding beams of electrons and protons, each of 2 TeV total energy. What laboratory energy would be required to achieve the same center-of-mass energy if electrons collide with stationary protons? Repeat the calculation for beams of 2 GeV instead of 2 TeV.

3. Beams of electrons and protons, both traveling at almost the speed of light, collide. The electrons and protons are in bunches 2 cm in length in two rings of 300 m circumference, each of which contains one bunch. Each bunch contains 3x1011 particles, and the circulating frequency is 106=sec for each beam, so that 106 bunches collide with each other per second. Assume that the particle is distributed uniformly over cross-sectional areas of 0.2 mm2, and that this is also the area of the intersecting collision region.

a) Determine the luminosity

b) If the cross section for collisions is 10 µb, determine the number of scattering events per second that would be observed in a counter totally surrounding the intersection region.

c) Find the average x of electrons.

d) If the beam of electrons scatters from a stationary target of liquid hydrogen (density ≈ 0.1 g/cm3) 2 cm long, rather than with the circulating proton beam, find the number of scattering events and compare to part b).

4. The Rutherford scattering amplitude can be written as:

622_pic1.png

where V(x) is the scattering potential and q = p ?? p0 is the momentum transfer of the alpha particle (Z1e) to the target (Ze). Assume V(x) is the Coulomb potential of a nucleus shielded by an electron cloud. Use the form:

1793_pic2.png

where a is a length of characteristic of atomic dimension. Using this amplitude, and the fact that the target charge distribution is spherically symmetric to derive the Rutherford scattering amplitude in the form:

f(q2) = -2mZ1Ze2/q2 +?/a)2

Finally, rewrite this equation in terms of the kinetic energy of the incident alpha particle and the scattering angle.

5. Assume a probability distribution given by (x=j x j)

(4) x <= R : ρ(x) = ρ0

(5) x > R : ρ(x) = 0

a) Compute the form factor for this uniform charge distribution.

b) Calculate < x2 >1/2

6. Download and read the paper, "New measurements of the protons's size and structure using polarized photons", by John Arrington. Answer the following questions with no more than a paragraph of written response for each question.

a) What are the two methods being used to extract the electric and magnetic form factors, GE and GM?

b) Qualitatively, how does the extracted ratio GE/GM differ for these two methods?

c) What is the current explanation for the difference in the ratios between these two types of measurements?

 

 

 

 

   Related Questions in Physics

  • Q : Define Faint Faint , young sun paradox

    Faint, young sun paradox: The theories of stellar evolution point out that as stars mature on the main series, they grow gradually hotter and brighter; computations propose that at as regards the time of the formation of Earth, the Su

  • Q : Define Lux or SI unit of the illuminance

    Lux: lx: The derived SI unit of the illuminance equivalent to the illuminance generated by a luminous flux of 1 lm distributed consistently over a region of 1 m2; it therefore has units of lm/m2.

  • Q : What is De Broglie wavelength De

    De Broglie wavelength (L. de Broglie; 1924): The prediction that particles too contain wave characteristics, where the efficient wavelength of the particle would be inversely proportional to its momentum, where the constant of the pro

  • Q : Define Copernican principle Copernican

    Copernican principle (N. Copernicus): The idea, recommended by Copernicus, that the Sun, not the Earth, is at the center of the earth. We now know that neither idea is accurate (that is, the Sun is not even situated at the center of o

  • Q : What it means of Aberration Defining 

    Defining Aberration: The obvious change in the position of a light-emitting object due to the fidelity of the speed of light and the

  • Q : Describe the term ntu in thermodynamics

    Describe the term ntu in thermodynamics? Illustrate in short.

  • Q : Nuclear Physics Homework Help NUCLEAR

    NUCLEAR PHYSICS (PHY555) HOMEWORK #1 1. Calculate the luminosity for a beam of protons of 1 µA colliding with a stationary liquid hydrogen target 30 cm long. Compare this to a typical colliding beam luminosity of ∼1034 cm-2

  • Q : Report on Radiobiology for Travel Space

    I have a problem in wirting a report on Radiobiology for Travel Space.  Can someone provide me a complete report on the above topic.

  • Q : Biot-Savart law Biot-Savart law (J.B.

    Biot-Savart law (J.B. Biot, F. Savart) - The law which explains the contributions to the magnetic field by an electric current. This is analogous to the Coulomb's law. Mathematically: dB = (mu0 I)/(4 pi r2) dl cross e

  • Q : What is Transition temperature

    Transition temperature: The temperature (that is, dependant on the substance comprised) below that a superconducting material conducts electricity with zero resistance; therefore, the temperature above which a superconductor lose its superconductive p