--%>

Nuclear Physics Homework Help

NUCLEAR PHYSICS (PHY555) HOMEWORK #1

1. Calculate the luminosity for a beam of protons of 1 µA colliding with a stationary liquid hydrogen target 30 cm long. Compare this to a typical colliding beam luminosity of ∼1034 cm-2s-1.

2. An imaginary accelerator consists of colliding beams of electrons and protons, each of 2 TeV total energy. What laboratory energy would be required to achieve the same center-of-mass energy if electrons collide with stationary protons? Repeat the calculation for beams of 2 GeV instead of 2 TeV.

3. Beams of electrons and protons, both traveling at almost the speed of light, collide. The electrons and protons are in bunches 2 cm in length in two rings of 300 m circumference, each of which contains one bunch. Each bunch contains 3x1011 particles, and the circulating frequency is 106=sec for each beam, so that 106 bunches collide with each other per second. Assume that the particle is distributed uniformly over cross-sectional areas of 0.2 mm2, and that this is also the area of the intersecting collision region.

a) Determine the luminosity

b) If the cross section for collisions is 10 µb, determine the number of scattering events per second that would be observed in a counter totally surrounding the intersection region.

c) Find the average x of electrons.

d) If the beam of electrons scatters from a stationary target of liquid hydrogen (density ≈ 0.1 g/cm3) 2 cm long, rather than with the circulating proton beam, find the number of scattering events and compare to part b).

4. The Rutherford scattering amplitude can be written as:

622_pic1.png

where V(x) is the scattering potential and q = p ?? p0 is the momentum transfer of the alpha particle (Z1e) to the target (Ze). Assume V(x) is the Coulomb potential of a nucleus shielded by an electron cloud. Use the form:

1793_pic2.png

where a is a length of characteristic of atomic dimension. Using this amplitude, and the fact that the target charge distribution is spherically symmetric to derive the Rutherford scattering amplitude in the form:

f(q2) = -2mZ1Ze2/q2 +?/a)2

Finally, rewrite this equation in terms of the kinetic energy of the incident alpha particle and the scattering angle.

5. Assume a probability distribution given by (x=j x j)

(4) x <= R : ρ(x) = ρ0

(5) x > R : ρ(x) = 0

a) Compute the form factor for this uniform charge distribution.

b) Calculate < x2 >1/2

6. Download and read the paper, "New measurements of the protons's size and structure using polarized photons", by John Arrington. Answer the following questions with no more than a paragraph of written response for each question.

a) What are the two methods being used to extract the electric and magnetic form factors, GE and GM?

b) Qualitatively, how does the extracted ratio GE/GM differ for these two methods?

c) What is the current explanation for the difference in the ratios between these two types of measurements?

 

 

 

 

   Related Questions in Physics

  • Q : What is curvilinear motion What do you

    What do you mean by the term curvilinear motion? State in brief?

  • Q : Secondary electron image and back

    What is main difference between secondary electron image and the back scattered electron image? State briefly.

  • Q : Define Van der Waals force Van der

    Van der Waals force (J.D. van der Waals): The forces responsible for non-ideal behavior of gases, and for lattice energy of molecular crystals. There are three main causes: dipole-dipole interaction; dipole-induced dipole moments; and dispersion a for

  • Q : Explain avogadro's hypothesis

    Avogadro's hypothesis (Count A. Avogadro; 1811): Equivalent volumes of all gases at similar temperature and pressure contain equivalent numbers of molecules. This is, in fact, true only for the ideal gases.  <

  • Q : Define Siemens or SI unit of an

    Siemens: S (after E.W. von Siemens, 1816-1892): The derived SI unit of an electrical conductance equivalent to the conductance of an element which has a resistance of 1 O [ohm]; this has units of O-1.

  • Q : What are Woodward-Hoffmann rules

    Woodward-Hoffmann rules: The rules leading the formation of products throughout certain kinds of organic reactions.

  • Q : What is neutral buoyancy What do you

    What do you mean by the term neutral buoyancy? Briefly illustrate it.

  • Q : What is Wiens displacement law constant

    Wien's displacement law constant, b: It is the constant of Wien displacement law. This has the value of 2.897 756 x 10-3 m K.

  • Q : What is Hubble constant Hubble constant

    Hubble constant: H0 (E.P. Hubble; 1925): The constant that determines the relationship among the distance to a galaxy and its velocity of recession due to the growth of the Universe. As the Universe is self-gravitating, it is not trut

  • Q : Define Uniformity principle Uniformity

    Uniformity principle (E.P. Hubble): The principle which the laws of physics here and now are not dissimilar, at least qualitatively, from the laws of physics in preceding or future epochs of time, or somewhere else in the Universe. This principle was