--%>

Non-ideal Gases Fugacity

The fugacity is a pressure like quantity that is used to treat the free energy of nonideal gases.

Now we begin the steps that allow us to relate free energy changes to the equilibrium constant of real, nonideal gases. The thermodynamic reaction (∂G/∂P) t = V is used with the ideal gas relation PV = RT, or V = RT/P, to obtain G = G° = R in P. it was this equation that led to the familiar equilibrium constant expression. If the ideal gas relation PV = RT is not satisfactory, some other quality equations, that of van der Waals, for example, could be used to express the pressure dependence of V. if that were done, the integration of (∂G/∂P)T = V would produce an awkward expression for the equilibrium constant. Thus a route that preserves the simple form of the equilibrium constant expression is preferable.

A satisfactory procedure is the introduction of a function called the fugacy ƒ.  This procedure insists on the free energy equation having the convenient form of the nonideal complications are hidden in the fugacy term. A number of manipulations are necessary; we begin with the thermodynamic equation for mol 1 of gas at constant temperature.

G2 - G1 = V dP

The quantity RT/P can be added to and subtracted from the integrand to give

G2 - G1 = [RT/P + (V - RT/P0] dP

= RT/P dP = (V - RT/P dP

= RTY in P2/P1 + (V - RT/P) dP


Thus the ratio f/P can be calculated at any temperature for which viral coefficient data are available and for any pressure in the range in which these data are applicable. If the real gas behavior is expressed by any other equation of state, the integration can be carried out graphically or with the help of a computer.

Fugacity and the law of corresponding states: for gases for which molar volume measurements have not been made and an equation of state is not available, the law of corresponding states can be used to estimate the fugacities at various reduced variables PR, VR and TR all gases follow the same imperfection and therefore the same nonideality. Furthermore, the variation of the compressibility factor Z with the reduced pressure has been represented for various values TR. These data are all that is necessary for the integration values of:

Z = PV/RT

From which we obtain:

V = RT/P × Z

With this relation eq. can be written as:

RT In ƒ/P = ∫PO (RT/P × Z - RT/P) dP = RT  ∫PO (Z - 1) dP/P

Or, In ƒ/P = 
 ∫PO (Z - 1) dP/P =  ∫PO (Z - 1) d PR/PR

The data of Z as a function of PR for a given value of TR then allow graphical integrations to be performed to give curves.

Example: estimate the fugacity of methane at 200 bar and 25°C, but use the correlation that is based on the law of corresponding states. The critical data give = 46.3 bar and T = 190.6 K for methane.

Solution: at 200 bar the reduced pressure is 200 bar/46.3 bar = 4.32. At 25°C the reduced temperature is 298.15/190.6 K = 1.56. From the value of ƒ/P is estimated at about 0.8, given ƒ = 160 bar.

   Related Questions in Chemistry

  • Q : Mass percent Help me to go through this

    Help me to go through this problem. 10 grams of a solute is dissolved in 90 grams of a solvent. Its mass percent in solution is : (a) 0.01 (b) 11.1 (c)10 (d) 9

  • Q : Units of Measurement Unit of

      Unit of measurement- These are also some systems for units:      (1) 

  • Q : Question based on vapour pressure While

    While a substance is dissolved in a solvent, the vapour pressure of the solvent is decreased. This results in: (a) An increase in the boiling point of the solution (b) A decrease in the boiling point of solvent (c) The solution having a higher freezing point than

  • Q : Group Cations Explain how dissolving

    Explain how dissolving the Group IV carbonate precipitate with 6M CH3COOH, followed by the addition of extra acetic acid, establishes a buffer with a pH of approximately

  • Q : Colligative properties give atleast two

    give atleast two application of following colligative properties

  • Q : What is solvent dielectric effect?

    Ionic dissociation depends on the dielectric constant of the solvent.The Arrhenius that ions are in aqueous solutions in equilibrium with parent molecular species allows many of the properties of ionic solutions to be understood. But difficulties began to

  • Q : Avogadro's hypothesis Law Principle

    Avogadro's hypothesis Law Principle- Berzelius, a chemist tried

  • Q : Problem based on molecular weight

    Select the right answer of the question. Molecular weight of urea is 60. A solution of urea containing 6g urea in one litre is : (a)1 molar (b)1.5 molar (c) 0.1 molar (d) 0.01 molar

  • Q : What do you mean by the term medicine

    What do you mean by the term medicine dropper? Explain briefly?

  • Q : Advantages of doing your own chemistry

    What are the advantages of doing your own chemistry assignments? State your comment?