--%>

Non-ideal Gases Fugacity

The fugacity is a pressure like quantity that is used to treat the free energy of nonideal gases.

Now we begin the steps that allow us to relate free energy changes to the equilibrium constant of real, nonideal gases. The thermodynamic reaction (∂G/∂P) t = V is used with the ideal gas relation PV = RT, or V = RT/P, to obtain G = G° = R in P. it was this equation that led to the familiar equilibrium constant expression. If the ideal gas relation PV = RT is not satisfactory, some other quality equations, that of van der Waals, for example, could be used to express the pressure dependence of V. if that were done, the integration of (∂G/∂P)T = V would produce an awkward expression for the equilibrium constant. Thus a route that preserves the simple form of the equilibrium constant expression is preferable.

A satisfactory procedure is the introduction of a function called the fugacy ƒ.  This procedure insists on the free energy equation having the convenient form of the nonideal complications are hidden in the fugacy term. A number of manipulations are necessary; we begin with the thermodynamic equation for mol 1 of gas at constant temperature.

G2 - G1 = V dP

The quantity RT/P can be added to and subtracted from the integrand to give

G2 - G1 = [RT/P + (V - RT/P0] dP

= RT/P dP = (V - RT/P dP

= RTY in P2/P1 + (V - RT/P) dP


Thus the ratio f/P can be calculated at any temperature for which viral coefficient data are available and for any pressure in the range in which these data are applicable. If the real gas behavior is expressed by any other equation of state, the integration can be carried out graphically or with the help of a computer.

Fugacity and the law of corresponding states: for gases for which molar volume measurements have not been made and an equation of state is not available, the law of corresponding states can be used to estimate the fugacities at various reduced variables PR, VR and TR all gases follow the same imperfection and therefore the same nonideality. Furthermore, the variation of the compressibility factor Z with the reduced pressure has been represented for various values TR. These data are all that is necessary for the integration values of:

Z = PV/RT

From which we obtain:

V = RT/P × Z

With this relation eq. can be written as:

RT In ƒ/P = ∫PO (RT/P × Z - RT/P) dP = RT  ∫PO (Z - 1) dP/P

Or, In ƒ/P = 
 ∫PO (Z - 1) dP/P =  ∫PO (Z - 1) d PR/PR

The data of Z as a function of PR for a given value of TR then allow graphical integrations to be performed to give curves.

Example: estimate the fugacity of methane at 200 bar and 25°C, but use the correlation that is based on the law of corresponding states. The critical data give = 46.3 bar and T = 190.6 K for methane.

Solution: at 200 bar the reduced pressure is 200 bar/46.3 bar = 4.32. At 25°C the reduced temperature is 298.15/190.6 K = 1.56. From the value of ƒ/P is estimated at about 0.8, given ƒ = 160 bar.

   Related Questions in Chemistry

  • Q : Group IV Cations Chromium(III)

    Chromium(III) hydroxide is highly insoluble in distilled water but dissolves readily in either acidic or basic solution. Briefly explain why the compound can dissolve in acidic or in basic but not in neutral solution. Write appropriate equations to support your answer.

  • Q : The three facts on the evaporation

    Describe briefly the three facts on the evaporation?

  • Q : What is Elevation in boiling point? The

    The boiling of a liquid may be defused by the temperature at which its vapour pressure which is equal to atmospheric pressure. The effect of addition in a non-volatile solute on the boiling point shown and its solution containing non-volatile solute with tempe

  • Q : Molarity what is the molarity of the

    what is the molarity of the solution prepared by dissolving 75.5 g of pure KOH in 540 ml of solution

  • Q : Problem on moles of solution The number

    The number of moles of a solute in its solution is 20 and total no. of moles are 80. The mole fraction of solute wil be: (a) 2.5 (b) 0.25 (c) 1 (d) 0.75

  • Q : Extensive property Choose the right

    Choose the right answer from following. Which one of the following is an extensive property: (a) Molar volume (b) Molarity (c) Number of moles (d) Mole fraction

  • Q : Basic concept Give me answer of this

    Give me answer of this question. The volume of water to be added to 100cm3 of 0.5 N N H2SO4 to get decinormal concentration is : (a) 400 cm3 (b) 500cm3 (c) 450cm3 (d)100cm3

  • Q : Water under pressure problem-henry law

    Can someone help me in going through this problem. The statement “When 0.003 moles of a gas are dissolved in 900 gm of water under a pressure of 1 atm, 0.006 moles will be dissolved under the pressure of 2 atm", signfies: (a)

  • Q : Problem on Clausius equation of state

    If a gas can be described by the Clausius equation of state: P (V-b) = RT Where b is a constant, then:  (a) Obtain an expression for the residual vo

  • Q : Moles of chloride ion Select the right

    Select the right answer of the question. A solution of CaCl2 is 0.5 mol litre , then the moles of chloride ion in 500ml will be : (a) 0.25 (b) 0.50 (c) 0.75 (d)1.00