--%>

Molecular Properties Symmetry

Molecular orbitals and molecular motions belong to certain symmetry species of the point group of the molecule.

Examples of the special ways in which vectors or functions can be affected by symmetry operations are illustrated here. All wave functions solutions, or eigenfunctions, for an atom or a molecule transform according to one or another of the special symmetry species of a point group. We thus have a very powerful guide to the form of any vector or function that describes the properties or behaviour of a symmetric molecule. Each vector or function must transform according to one of the symmetry species of the point group to which the molecule belongs.

Typically, in dealing with ,molecular properties, we proceed from simple and easily pictured or easily described functions or vectors associated with the atoms of a molecule. We use these to build up functions or vectors appropriate to the whole molecule. Thus to describe the translational, rotational and vibrational motion of a molecule, we might start with the three Cartesian displacement coordinates of each atom of the molecule. To describe the translational, rotational and vibrational motion of a molecule, we often adopt a linear combination of atomic orbitals(LCAO) approach.

Now we begin the steps that let us use easy to deal with vectors or functions to deduce the symmetry of molecular vectors or functions.

Characters of transformation matrices: suppose you were to construct transformation matrices, n the basis of a set of vectors or functions. Suppose also that there existed other vectors or functions which were linear combinations of the first set of vectors or functions. You would find that the sum of the diagonal elements of the transformation matrix that represents any symmetry operation would be the same fr any basis vectors or functions. (The transformation matrices themselves would be different for different basis vectors or functions.)

The sum of the diagonal elements of a transformation matrix of a representation is known as the character of the matrix. Thus, the characters of the transformation matrices that represent a group are the same for all basis vectors or functions that are or could be formed each other by linear combinations.

We generally would need large matrices to show the effect of each symmetry operation on the molecule. For example, if we use the three Cartesian displacement coordinates on each atom of an n-atom molecule as our basis, we generally need matrices of order 3n to describe the effects of the operations. If we use bond orbitals as a basis, we generally need transformation matrices with an order equal to the number of bonds. These large matrices can be converted, or reduced, to sets of smaller matrices by forming linear combinations of the original basis vectors. The original sets of large matrices constitute a reducible representation. The smallest matrix representations obtained by appropriate linear combinations of the basis vectors are called irreducible representations. The characters of the reducible representation are the same as the sum of the characters of the irreducible representations that are obtained from the original representation.

The use of characters rather than the transformation matrices themselves brings a great simplicity and elegance to the use of symmetry. First we introduced the tables used to display these characters, and we investigate some of the special properties of the characters of the irreducible representation matrices. 

   Related Questions in Chemistry

  • Q : Osmotic Pressure The O.P. (Osmotic

    The O.P. (Osmotic Pressure) of equimolar solution of Urea, BaCl2 and AlCl3, will be in the order:(a) AlCl3 > BaCl2 > Urea  (b) BaCl2 > AlCl3 > Urea  (c) Urea > BaCl2<

  • Q : Hydrocarbons list and identify

    list and identify differences between the major classes of hydrocarbons

  • Q : Means of molal solution Choose the

    Choose the right answer from following. A molal solution is one that contains one mole of a solute in: (a) 1000 gm of the solvent (b) One litre of the solvent (c) One litre of the solution (d) 22.4 litres of the solution

  • Q : Meaning of molality of a solution The

    The molality of a solution will be: (i) Number of moles of solute per 1000 ml of solvent (ii) Number of moles of solute per 1000 gm of solvent (iii) Number of moles of solute per 1000 ml of solution (iv) Number of gram equivalents of solute per 1000 m

  • Q : Water under pressure problem-henry law

    Can someone help me in going through this problem. The statement “When 0.003 moles of a gas are dissolved in 900 gm of water under a pressure of 1 atm, 0.006 moles will be dissolved under the pressure of 2 atm", signfies: (a)

  • Q : What do you mean by the term hydra What

    What do you mean by the term hydra? Briefly define it.

  • Q : Calculating weight of acid Give me

    Give me answer of this question. The formula weight of H2SO4 is 98. The weight of the acid in 400mi of solution is: (a)2.45g (b) 3.92g (c) 4.90g (d) 9.8g

  • Q : Unit of molality Select the right

    Select the right answer of the question. The unit of molality is: (a) Mole per litre (b) Mole per kilogram (c) Per mole per litre (d) Mole litre

  • Q : Symmetry Elements The symmetry of the

    The symmetry of the molecules can be described in terms of electrons of symmetry and the corresponding symmetry operations.Clearly some molecules, like H2O and CH4, are symmetric. Now w

  • Q : Benefits of soapy detergents over the

    What are the benefits of soapy detergents over the soap less detergents? Briefly state the benefits?