--%>

Molecular Properties Symmetry

Molecular orbitals and molecular motions belong to certain symmetry species of the point group of the molecule.

Examples of the special ways in which vectors or functions can be affected by symmetry operations are illustrated here. All wave functions solutions, or eigenfunctions, for an atom or a molecule transform according to one or another of the special symmetry species of a point group. We thus have a very powerful guide to the form of any vector or function that describes the properties or behaviour of a symmetric molecule. Each vector or function must transform according to one of the symmetry species of the point group to which the molecule belongs.

Typically, in dealing with ,molecular properties, we proceed from simple and easily pictured or easily described functions or vectors associated with the atoms of a molecule. We use these to build up functions or vectors appropriate to the whole molecule. Thus to describe the translational, rotational and vibrational motion of a molecule, we might start with the three Cartesian displacement coordinates of each atom of the molecule. To describe the translational, rotational and vibrational motion of a molecule, we often adopt a linear combination of atomic orbitals(LCAO) approach.

Now we begin the steps that let us use easy to deal with vectors or functions to deduce the symmetry of molecular vectors or functions.

Characters of transformation matrices: suppose you were to construct transformation matrices, n the basis of a set of vectors or functions. Suppose also that there existed other vectors or functions which were linear combinations of the first set of vectors or functions. You would find that the sum of the diagonal elements of the transformation matrix that represents any symmetry operation would be the same fr any basis vectors or functions. (The transformation matrices themselves would be different for different basis vectors or functions.)

The sum of the diagonal elements of a transformation matrix of a representation is known as the character of the matrix. Thus, the characters of the transformation matrices that represent a group are the same for all basis vectors or functions that are or could be formed each other by linear combinations.

We generally would need large matrices to show the effect of each symmetry operation on the molecule. For example, if we use the three Cartesian displacement coordinates on each atom of an n-atom molecule as our basis, we generally need matrices of order 3n to describe the effects of the operations. If we use bond orbitals as a basis, we generally need transformation matrices with an order equal to the number of bonds. These large matrices can be converted, or reduced, to sets of smaller matrices by forming linear combinations of the original basis vectors. The original sets of large matrices constitute a reducible representation. The smallest matrix representations obtained by appropriate linear combinations of the basis vectors are called irreducible representations. The characters of the reducible representation are the same as the sum of the characters of the irreducible representations that are obtained from the original representation.

The use of characters rather than the transformation matrices themselves brings a great simplicity and elegance to the use of symmetry. First we introduced the tables used to display these characters, and we investigate some of the special properties of the characters of the irreducible representation matrices. 

   Related Questions in Chemistry

  • Q : Problem on molecular weight of solid

    The vapor pressure of pure benzene at a certain temperature is 200 mm Hg. At the same temperature the vapor pressure of a solution containing 2g of non-volatile non-electrolyte solid in 78g of benzene is 195 mm Hg. What is the molecular weight of solid:

  • Q : Problem on moles of solution The number

    The number of moles of a solute in its solution is 20 and total no. of moles are 80. The mole fraction of solute wil be: (a) 2.5 (b) 0.25 (c) 1 (d) 0.75

  • Q : Concentration of Barium chloride Give

    Give me answer of this question. If 5.0gm of BaCl2 is present in 106 gm solution, the concentration is: (a)1 ppm (b)5 ppm (c)50 ppm (d)1000 ppm

  • Q : Procedure to judge that organic

    Describe briefly the procedure to judge that the given organic compound is pure or not?

  • Q : What are the chemical properties of

    Haloalkanes are extremely reactive category of aliphatic compounds. Their reactivity is due to the presence of polar carbon-halogen bond in their mole

  • Q : Problem on mole fraction of glucose

    Provide solution of this question. While 1.80gm glucose dissolve in 90 of H2O , the mole fraction of glucose is: (a) 0.00399 (b) 0.00199 (c) 0.0199 (d) 0.998

  • Q : Kinds of insulators Describe all the

    Describe all the kinds of insulators which are present?

  • Q : Direction of dipole moment expected

    Illustrate the direction of the dipole moment expected for hydrogen bromide?

  • Q : Infrared Adsorption The adsorption of

    The adsorption of infrared radiation by diatomic molecules increases the vibrational energy fo molecules and gives information about the force constant for the "spring" of the molecule.;The molecular motion that has the next larger energy level spacing aft

  • Q : What is electrolysis? Explain with

    Passage of a current through a solution can produce an electrolysis reaction.Much additional information on the properties of the ions in an aqueous solution can be obtained from studies of the passage of a direct current (dc) through a cell containing a s