--%>

Molecular energies and speeds

The average translational kinetic energies and speeds of the molecules of a gas can be calculated.

The result that the kinetic energy of 1 mol of the molecules of a gas is equal to 3/2 RT can be used to obtain numerical values for the average energies and speeds of these molecules. Notice, first, the remarkable generality of the relation KE = 3/2 RT. The translational kinetic energy of 1 mol of molecules, and therefore the average translational energy of the individual molecules, and therefore the average translational energy of the individual molecules, depends on only the temperature of the gas. None of the properties of the molecules not the atomic makeup, not the mass, not the shape-need is considered. The average kinetic energy of gas molecules depends on only the temperature.

Molecular translational energies: the value of R was obtained as 8.3143 J K-1 mol-1. The translational kinetic energy of 1 mol of gas molecules at 25°C (298.15 K) is

3/2 RT = 3/2 (8.3143 J K-1 mol-1) (298.15 K)

= 3718 J mol-1 = 3.718 kJ mol-1

This quantity, about 4 kJ/mol, will be a useful reference energy amount. It is a measure of the readily available, or "loose-change, " energy.

The average energy of a single molecule is given by

ke? = KE/ 639_molecular energy.png = (3/2 RT)/ 639_molecular energy.png 

For dealing with the energies of individual atoms or molecules, it is convenient to introduce a constant k, called the Boltzmann constant, as

K = R/ 639_molecular energy.png = 1.3806 × 10-23 J K-1

Notice that the Boltzmann constant is the gas constant per molecule. With this new constant we can express the average translational kinetic energy of a molecule of a gas as

ke? = 3/2 kT 

This energy, at 25°C, is

ke? = 3/2 (1.3806 × 10-23 J K-1) (298.15 K)

= 6.174 × 10-23 J


Speeds of molecules: energies have broader application in chemistry than do speeds. But at first it is easier to appreciate speeds.

Consider a gas that contains molecules of a particular mass. Molecular speed values can be obtained by writing the kinetic energy of 1 mol of these molecules as

KE = 639_molecular energy.png (1/2 mv2?) = ½( 639_molecular energy.png m)v2? = ½ Mv2?

Where M is the mass of 1 mol of molecules. This kinetic energy is given, according to our kinetic-molecular theory deviation, by

KE = 3/2 RT

Equating these expressions and rearranging give

√v2 = √3RT/M

The cumbersome term √v2 is known as the root mean square (rms) speed. It is the value that would be obtained if each molecular speed were squared, the average value of the squared terms was calculated, and finally the square root of this average is obtained. The rms value is only slightly different from a simple average if the individual contributions are bunched closely together. The rms value is typically about 10 percent higher than the simple average. We can, for the moment, take the rms value as being indicative of the average molecular speed.

Average speeds of gas molecules (equal to 0.921 √v2) at 25°C (298 K) and 1000°C (1273 K)

357_molecular energy1.png

   Related Questions in Chemistry

  • Q : Atmospheric pressure Give me answer of

    Give me answer of this question. The atmospheric pressure is sum of the: (a) Pressure of the biomolecules (b) Vapour pressure of atmospheric constituents (c) Vapour pressure of chemicals and vapour pressure of volatile (d) Pressure created on to atmospheric molecules

  • Q : Molarity A solution has volume 200ml

    A solution has volume 200ml and molarity 0.1.if it is diluted 5times then calculate the molarity of reasulying solution and the amount of water added to it.

  • Q : What is electrolysis? Explain with

    Passage of a current through a solution can produce an electrolysis reaction.Much additional information on the properties of the ions in an aqueous solution can be obtained from studies of the passage of a direct current (dc) through a cell containing a s

  • Q : Pressure Phase Diagrams The occurrence

    The occurrence of different phases of a one component system can be shown on a pressure temperature. The phases present in a one line system at various temperatures can be conveniently presented on a P- versus-T diagram. An example is pro

  • Q : Molar mass of solute The boiling point

    The boiling point of benzene is 353.23 K. If 1.80 gm of a non-volatile solute was dissolved in 90 gm of benzene, the boiling point is increased to 354.11 K. Then the molar mass of the solute is: (a) 5.8g mol-1  (b)

  • Q : Neutralization of benzoic acid Choose

    Choose the right answer from following. How many grams of NaOH will be required to neutralize 12.2 grams of benzoic acid : (a) 40gms (b) 4gms (c)16gms (d)12.2gms

  • Q : Determining Mole fraction of water Can

    Can someone please help me in getting through this problem. The mole fraction of water in 20% aqueous solution of H2O2 is: (a) 77/68 (b) 68/77 (c) 20/80  (d) 80/20

  • Q : What do you mean by the term dipole

    What do you mean by the term dipole moment? Briefly describe it.

  • Q : What are biodegradable polymers?

      These are polymers that can be broken into small segments by enzyme-catalysed reactions. The required enzymes are produced by microorganism. It is a known fact that the carbon-carbon bonds of chain growth polymers are inert to enzyme-catalysed reactions, and hence they are non biod