--%>

Molecular basis of third law.

The molecular, or statistical, basis of the third law can be seen by investigating S = k in W.

The molecular deductions of the preceding sections have led to the same conclusions as that stated in the third law of thermodynamics, namely, that a value can be assigned to the entropy of any substance. When the entropy values calculated from the details of the molecular energies are compared with those obtained calorimetric third law measurements, arrangements with in experimental error in usually found, but there are some exceptions. It is the perfectly ordered state of the crystal, with all the molecules in the same lowest energy level that is the molecular basis of the third law that the entropy is zero at absolute zero.

The third law value obtained for the entropy of CO at 1 bar and 298.15 K is 193.3 JK -1 mol-1. This value is obtained lower than the statistical result of 197.6 J K mol-1 obtained by the methods of the preceding section. Similar descriptions are found for NO and N2O. The third law result forH2O vapour is lower than the statistically calculated value by 3.3 J K-1 mol-1  there discrepancies can now be attributed to the failure of these materials to form the perfect crystalline state required at absolute zero for the third law to be applied. It is the perfectly ordered state of the crystal, with all the molecules in the same lowest energy level that is the molecular basis of the third law that the entropy is zero at absolute zero. (The positive value at the entropies of all compounds at temperature above absolute zero result from the fact as the temperature is raised, more and more energy levels become accessible to the molecules. The entropy at such temperature is, of course very characteristic of the individual molecule, since each molecule has its own particular energy level pattern.)

The discrepancies between calculated and third law entropies can now be attributed to a nonzero value of the entropy at absolute zero. Thus we must explain absolute zero entropy of, for example, about 4.3 J K-1 mol-1 for CO.

A disorder to be expected for such a material is that in which the molecular alignment in the crystal is not CO CO CO CO .... But rather a disorder pattern in the crystal like CO CO OC CO.... a crystal formed initially in this way could have the disorder "frozen" in as the temperature is lowered, there being too little thermal energy for the molecules to rearrange to the ordered structure. Thus, instead of each molecule having a single state to occupy, the randomness makes two states available to each molecule. The entropy of such a crystal can then be expected to be greater by k In 2N = R In 2 = 5.8 JK-1 mol-1 than it would be for a perfect crystal. This is, in fact, the approximate discrepancy found for CO.

Other types of disorder can now be expected to persist at absolute zero and to lead to apparent discrepancies in the third law. For example, a glassy material at entropy of zero will not have the necessary molecular order to guarantee as entropy of zero at absolute zero. In view of such difficulties, the third law statement must include the restriction that only perfectly ordered crystalline materials have zero entropy at absolute zero.

   Related Questions in Chemistry

  • Q : Molar concentration of hydrogen 20 g of

    20 g of hydrogen is present in 5 litre of vessel. Determine he molar concentration of hydrogen: (a) 4  (b) 1 (c) 3 (d) 2 Choose the right answer from above.

  • Q : Colligative property problem Which is

    Which is not a colligative property: (a) Refractive index (b) Lowering of vapour pressure (c) Depression of freezing point (d) Elevation of boiling point    

  • Q : Organic and inorganic substances living

    living beings are made up of organic and inorganic substances.according to their complexity of their molecules how can ach of these substances be classified?

  • Q : What is Distillation Separation by

    Separation by distillation can be described with a boiling point diagram. The important process of distillation can now be investigated. From the boiling point diagram one can see that if a small amount of vapour were removed from a liquid of composit

  • Q : Problem based on molecular weight

    Select the right answer of the question. Molecular weight of urea is 60. A solution of urea containing 6g urea in one litre is : (a)1 molar (b)1.5 molar (c) 0.1 molar (d) 0.01 molar

  • Q : Simulate the column in HYSYS The

    The objective of this work is to separate a binary mixture and to cool down the bottom product for storage. (Check table below to see which mixture you are asked to study). 100 kmol of feed containing 10 mol percent of the lighter component enters a continuous distillation column at the m

  • Q : BASIC CHARACTER OF AMINES IN GAS PHASE,

    IN GAS PHASE, BASICITIES OF THE AMINES IS JUST OPPOSITE TO BASICITY OF AMINES IN AQEUOUS PHASE .. EXPLAIN

  • Q : Describe various systems for

    Common system According to this system, the individual members are named according to alkyl groups att

  • Q : Polyhalogen compounds introduction for

    introduction for polyhalogen compound

  • Q : Problem on reversible and irreversible

    The second law states that  dS ≥ (dQ/T), where dS = dQ/T for a reversible process and dS > dQ/T for an irreversible process.   a. Show that since dW12 = -dW21 (dWreverse = -dWforward) for a r