--%>

Molarity based question

Help me to solve this problem. 4.0 gm of NaOH are contained in one decilitre of solution. Its molarity would be: (a) 4 M (b)2 M (c)1 M (d)1.5 M

   Related Questions in Chemistry

  • Q : Dipole attractions-London dispersion

    Describe how dipole attractions, London dispersion forces and the hydrogen bonding identical?

  • Q : Vapour pressure over mercury Choose the

    Choose the right answer from following. At 300 K, when a solute is added to a solvent its vapour pressure over the mercury reduces from 50 mm to 45 mm. The value of mole fraction of solute will be: (a)0.005 (b)0.010 (c)0.100 (d)0.900

  • Q : Finding Normality Can someone please

    Can someone please help me in getting through this problem. Concentrated H2SO4 has a density of 1.98 gm/ml and is 98% H2SO4 by weight. The normality is: (a) 2 N  (b) 19.8 N  (c) 39.6 N  (d) 98

  • Q : Forms a molecule to an organic molecule

    Briefly state what forms a molecule to an organic molecule?

  • Q : Calculate molarity of a solution

    Provide solution of this question. Molarity of a solution prepared by dissolving 75.5 g of pure KOH in 540 ml solution is: (a) 3.05 M (b) 1.35 M (c) 2.50 M (d) 4.50 M

  • Q : Define thermal energy The thermal part

    The thermal part of the internal energy and the enthalpy of an ideal gas can be given a molecular level explanation. All the earlier development of internal energy and enthalpy has been "thermodynamic". We have made no use o

  • Q : Molarity 20mol of hcl solution requires

    20mol of hcl solution requires 19.85ml of 0.01 M NAOH solution for complete neutralisation. the molarity of hcl solution

  • Q : PH of an Alkyl Halide Briefly state the

    Briefly state the pH of an Alkyl Halide?

  • Q : Problem on reversible process a. For a

    a. For a reversible process involving ideal gases in a closed system, Illustrate thatΔS = Cv ln(T2/T1) for a constant volume process ΔS = Cp ln(T2/T1) for a constant pressu

  • Q : What are biodegradable polymers?

      These are polymers that can be broken into small segments by enzyme-catalysed reactions. The required enzymes are produced by microorganism. It is a known fact that the carbon-carbon bonds of chain growth polymers are inert to enzyme-catalysed reactions, and hence they are non biod