--%>

Liquid Vapour Free Energies

The free energy of a component of a liquid solution is equal to its free energy in the equilibrium vapour.

Partial molal free energies let us deal with the free energy of the components of a solution. We use these free energies, or simpler concentration terms to which they correspond, when we deal with a variety of solution equilibrium matters. Here we begin by seeing how the partial molal free energy of a component of a liquid solution can be deduced.

We cannot count on the assuming of ideal behavior when we deal with liquid solutions. The components interact with one another and generally produce free energy effects characteristic of the particular system. Thus, liquid mixtures contrast with gas mixtures for which the ideal solution results are often satisfactory. The strategy in dealing with liquid systems is to relate the free energies of the components to those of the more easily treated equilibrium vapour.

Consider a binary system that can consist of a liquid, a vapour, or a liquid and vapour in equilibrium with one another. In view of the relation illustrated the free energy of the entire system, with superscript l for liquid and v for vapour, can be expressed as:

G = nlA GvA + nlB GlB + nA + nB GvA

For this binary system 

nlA = nvA = nA    and     nlB + nvB = nB

Or

nlA = nA - nvA    and    nlB = nB - nvB

For equilibrium between the liquid and vapour, the free energy will be a minimum with respect to the fraction, or amount of the components in the vapour phase. We can form d/GdnnA and dG/dnvB and set these derivatives equal to zero to obtain

GlA = GvA    and    GlB = GvB

The partial molal free energy of a component in a liquid solution is equal to its partial molal free energy in the equilibrium vapour. This result can be used to relate the partial molal free energies of components in liquid solutions to be partial molal free energies of the components in the equilibrium vapour.

Example: the vapor pressure of benzene and toluene over benzene toluene solutions are shown as plotted points. What do these vapor pressures tell us about the benzene-toluene solutions?

Solution: the vapor pressures of the components are very nearly proportional to the mole fractions of the components. With the subscript B for benzene and T for toluene, this behavior can be described by the equations:

PB = xBB and PT = xTT

Or, PB/P°A = xand PT/P°T = x
T

When these relations are used, we obtain:

GlB = G°B + RT In xB and GlT = G°T + RT In xT

This is the component free-energy behavior that, according to characterizes ideal behavior.

Also the volume of a benzene-toluene solution is very nearly equal to the sum of the volumes of the separate components, and no appreciable enthalpy change accompanies the mixing process. Liquid benzene-toluene solutions confirm closely to ideal-solution behavior. 

   Related Questions in Chemistry

  • Q : Volumes of solution after concentration

    Hydrochloric acid solution A and B encompass concentration of 0.5N and 0.1N  corresspondingly. The volumes of solutions A and B needed to make 2liters of 0.2N of HCL are: (i) 0.5l of A + 1.5l of B (ii) 1.5l of A + 0.5 l of B  (iii) 1.0 l of A + 1.0l of B&nbs

  • Q : Explain the process of adsorption of

    The extent of adsorption of a gas on a solid adsorbent is affected by the following factors: 1. Nature of the gas Since physical adsorption is non-specific in nature, every gas will get adsorbed on the

  • Q : Adiabatic compression A lean natural

    A lean natural gas is available at 18oC and 65 bars and must be compressed for economical pipeline transportation. The gas is first adiabatically compressed to 200 bars and then isobarically (i.e. at constant pressure) cooled to 25°C. The gas, which is

  • Q : How can enzymes act as catalyst?

    Enzymes are complex proteinous substances, produced by living bodies, such as act as catalysis in the physiological reactions. The enzymes are, also called biochemical catalysts and the phenomenon is known as bio-chemical catalysis because numerous reactions that occur the bodies of animals and p

  • Q : Problem on melting of ice A) It has

    A) It has been suggested that the surface melting of ice plays a role in enabling speed skaters to achieve peak performance. Carry out the following calculation to test this hypothesis. Suppose that the width of the skate in contact with the ice has been reduced by sh

  • Q : Production of alcoholic drinks give all

    give all physical aspects in the production of alcohol

  • Q : Problem related to molality Help me to

    Help me to solve this problem. What is the molality of a solution which contains 18 g of glucose (C6,H12, O6) in 250 g of water:  (a) 4.0 m (b) 0.4 m (c) 4.2 m (d) 0.8 m

  • Q : Relative lowering of vapour pressure

    Which of the following solutions will have a lower vapour pressure and why? a) A 5% aqueous solution of cane sugar. b) A 5% aqueous solution of urea.

  • Q : Schrodinger equation with particle in a

    Three dimensional applications of the Schrodinger equation are introduced by the particle-in-a-box problem.So far only a one-dimensional problem has been solved by application of the Schrodinger equation. Now the allowed energies and the probability functi

  • Q : Application of colligative properties

    Choose the right answer from following. Colligative properties are used for the determination of: (a) Molar Mass (b) Equivalent weight (c) Arrangement of molecules (d) Melting point and boiling point (d) Both (a) and (b)