--%>

Liquid surfaces

The surface between a liquid and a vapour distinguishes these fluids.


The surface tension of liquids can be looked upon as that the property which draws a liquid together and forms a liquid vapour interface, therefore, distinguishing liquids from gases.

The molecular basis for this property is suggested, where the unbalanced attractions experienced by the surface molecules are shown to lead to the amount of free liquid will pull it together to form a less spherical drop. The surface layer can be expected to have properties that differ from those of the bulk of the liquid.

The surface tension of the liquid can be defined with reference to where it is most easily pictured is a wire frame, arranged as a piston, used to expand a soap film. The definition also applies to the mechanically more difficult systems where the film is replaced by a layer of liquid of appreciable thickness. The force required stretching the film or liquid vapour is proportional to the length l of the piston. Since there are two surfaces of the film, the total length of the film is 2l, and the proportionality equation:

ƒ = γ(2l) can be written.

The proportionality constant γ is known as the surface tension, and according to the above equation it can be looked upon as the force by a surface of unit length.
Of more general use is the relation between surface tension and surface energy. The mechanical energy required to expand the surfaces by moving the piston a distance dx is f dx, or 2l dx. Since the area of new surface is 2l dx, the result:

Mechanical energy/change of surface area = 2lγ dx/ 2l dx = γ, can be obtained. This expression shows that the surface tension can be interpreted as the energy per unit surface area and that it is a mechanical rather than thermal energy. In these terms, the tendency of a surface to reduce its area is just another example of a system tending toward an arrangement of low free energy.

Surface tension of some liquids, N m-1:

Liquid 20°C 60°C 100°C Liquid t, °C Surface tension
H2O 0.07275 0.06618 0.05885 Hg 0 0.480
C2H5OH 0.0223 0.0223 0.0190 Ag 970 0.800
C6H6 0.0289 0.0237   NaCl 1080 0.094
(C2H5)2O 0.0170   0.0080 AgCl 452 0.125


Example: compare the heights to which water and carbon tetrachloride will rise as a result of capillary action in a tube with an internal diameter of 0.1 mm. at 20°C the surface tensions of water and carbon tetrachloride, respectively, are 0.0727 and 0.0268 N m-1, and their densities are 0.998 and 1.595 g mL-1.

Solution: 
we use to obtain:

L = 2 γ/rpg


The radius of the cube is 0.5 mm = 0.5 × 10-4 m, and the densities are 9.98 × 103 and 1.598 × 103 kg m-3.

For water: l = 2 (0.0727 N m-1)/(0.5 × 10-4 m) (9.98 × 103 kg m-3) (9.81 m s-1)

= 0.0297 m = 29.7 mm

For CCl4: l = 2 (0.0268 N m-1)/(0.5 × 10-4 m) (1.595 × 103 kg m-3) (9.81 m s-2)

= 0.00685 m = 6.85 mm.

   Related Questions in Chemistry

  • Q : What are various structure based

    This classification of polymers is based upon how the monomeric units are linked together. Based on their structure, the polymers are classified as: 1. Linear polymers: these are the polymers in which monomeric units are linked together to form long straight c

  • Q : Problem on physical and thermodynamic

    The shells of marine organisms contain calcium carbonate CaCO3, largely in a crystalline form known as calcite. There is a second crystalline form of calcium carbonate known as aragonite. Physical and thermodynamic properties of calcite and aragonite at 298

  • Q : Normality of sulphuric acid Help me to

    Help me to go through this problem. Normality of sulphuric acid is: (a) 2N (b) 4N (c) N/2 (d) N/4

  • Q : Describe chemical properties of amines.

    Like ammonia, primary, secondary and tertiary amines have a single pair of electrons on N atom. Hence chemical behavior of amines is similar to ammonia. Amines are basic in nature, and in most of the reactions they act as nucleophiles.      1. Reaction wi

  • Q : M ive me answer of this question. When

    ive me answer of this question. When mercuric iodide is added to the aqueous solution of potassium iodide, the: (a) Freezing point is raised (b) Freezing point is lowered (c) Freezing point does not change (d) Boiling point does not change

  • Q : Explain the preparation of phenols. The

    The methods used for the preparation of phenols are given below:    From aryl sulphonic acids

  • Q : Molality of a glucose solution What

    What will be the molality of a solution containing 18g of glucose (having mol. wt. = 180) dissolved in 500g of water: (i) 1m  (ii) 0.5m  (iii) 0.2m  (iv) 2m

  • Q : Cons of eating organic foods Illustrate

    Illustrate the cons of eating organic foods?

  • Q : Vitamines 7 enzyme cofactor what is the

    what is the relationship between vitamins and enzyme cofactors

  • Q : P- block why pentahalids are more

    why pentahalids are more covalent than tetrahalids