--%>

Liquid surfaces

The surface between a liquid and a vapour distinguishes these fluids.


The surface tension of liquids can be looked upon as that the property which draws a liquid together and forms a liquid vapour interface, therefore, distinguishing liquids from gases.

The molecular basis for this property is suggested, where the unbalanced attractions experienced by the surface molecules are shown to lead to the amount of free liquid will pull it together to form a less spherical drop. The surface layer can be expected to have properties that differ from those of the bulk of the liquid.

The surface tension of the liquid can be defined with reference to where it is most easily pictured is a wire frame, arranged as a piston, used to expand a soap film. The definition also applies to the mechanically more difficult systems where the film is replaced by a layer of liquid of appreciable thickness. The force required stretching the film or liquid vapour is proportional to the length l of the piston. Since there are two surfaces of the film, the total length of the film is 2l, and the proportionality equation:

ƒ = γ(2l) can be written.

The proportionality constant γ is known as the surface tension, and according to the above equation it can be looked upon as the force by a surface of unit length.
Of more general use is the relation between surface tension and surface energy. The mechanical energy required to expand the surfaces by moving the piston a distance dx is f dx, or 2l dx. Since the area of new surface is 2l dx, the result:

Mechanical energy/change of surface area = 2lγ dx/ 2l dx = γ, can be obtained. This expression shows that the surface tension can be interpreted as the energy per unit surface area and that it is a mechanical rather than thermal energy. In these terms, the tendency of a surface to reduce its area is just another example of a system tending toward an arrangement of low free energy.

Surface tension of some liquids, N m-1:

Liquid 20°C 60°C 100°C Liquid t, °C Surface tension
H2O 0.07275 0.06618 0.05885 Hg 0 0.480
C2H5OH 0.0223 0.0223 0.0190 Ag 970 0.800
C6H6 0.0289 0.0237   NaCl 1080 0.094
(C2H5)2O 0.0170   0.0080 AgCl 452 0.125


Example: compare the heights to which water and carbon tetrachloride will rise as a result of capillary action in a tube with an internal diameter of 0.1 mm. at 20°C the surface tensions of water and carbon tetrachloride, respectively, are 0.0727 and 0.0268 N m-1, and their densities are 0.998 and 1.595 g mL-1.

Solution: 
we use to obtain:

L = 2 γ/rpg


The radius of the cube is 0.5 mm = 0.5 × 10-4 m, and the densities are 9.98 × 103 and 1.598 × 103 kg m-3.

For water: l = 2 (0.0727 N m-1)/(0.5 × 10-4 m) (9.98 × 103 kg m-3) (9.81 m s-1)

= 0.0297 m = 29.7 mm

For CCl4: l = 2 (0.0268 N m-1)/(0.5 × 10-4 m) (1.595 × 103 kg m-3) (9.81 m s-2)

= 0.00685 m = 6.85 mm.

   Related Questions in Chemistry

  • Q : Explain various chemicals associated

    During processing of food, several chemicals are added to it to augment its shelf life and to make it more attractive as well. Main types of food addi

  • Q : Basic concepts Determination of correct

    Determination of correct mol. Mass from Roult's law is applicable to :

  • Q : Diffusion Molecular View When the

    When the diffusion process is treated as the movement of particles through a solvent the diffusion coefficient can be related to the effective size of diffusing particles and the viscosity of the medium.To see how the experimental coefficients can be treat

  • Q : Molecular mass from Raoults law Provide

    Provide solution of this question. Determination of correct molecular mass from Raoult's law is applicable to: (a) An electrolyte in solution (b) A non-electrolyte in a dilute solution (c) A non-electrolyte in a concentrated solution (d) An electrolyte in a liquid so

  • Q : Molarity of solution Help me to go

    Help me to go through this problem. When 7.1gm Na2SO4 (molecular mass 142) dissolves in 100ml H2O , the molarity of the solution is: (a) 2.0 M (b) 1.0 M (c) 0.5 M (d) 0.05 M

  • Q : Problem on bubble point The following

    The following mixture of hydrocarbons is obtained as one stream in a petroleum refinery.

    Q : Moles of HCl present in .70 L of a .33

    Detail the moles of HCl which are present in .70 L of a .33 M HCl solution?

  • Q : What is heat capacity and how to

    The temperature reliance of internal energy and enthalpy depends on the heat capacities at constant volume and constant pressure. The internal energy and enthalpy of chemical systems and the energy changes that accompany chemical reactions depend on the

  • Q : Coordination compounds discuss the

    discuss the practical uses of coordination compounds, give reactions involves and explain whats happening in the process

  • Q : Water under pressure problem-henry law

    Can someone help me in going through this problem. The statement “When 0.003 moles of a gas are dissolved in 900 gm of water under a pressure of 1 atm, 0.006 moles will be dissolved under the pressure of 2 atm", signfies: (a)