--%>

Linde liquefaction process

Liquefied natural gas (LNG) is produced using a Linde liquefaction process from pure methane gas at 3 bar and 280 K (conditions at point 1 in figure below). A three-stage compressor with interceding is used to compress the methane to 100 bar (point 2). The first stage compresses the gas from 1 bar to 5 bar, the second stage from 5 bar to 25 bar, and the tiiird stage from 25 bar to 100 bar. Between stages the gas Is isobarically cooled to 280 K. Each stage of the compressor can be assumed to operate reversibly and adiabaticaliy. The methane leaving the cooler is at 100 bar and 210 K (point 3). The flash dram is adiabatic and operates at! bar. The recycled methane leaving the heat exchanger (point 5') is at I bar and 200 K.

a) Calculate the fractions of vapour and liquid leaving the flash drum {Hint: write balance equations around the subsystem consisting of the heat exchanger, throttle valve and flash drum).

b) Calculate the temperature at the inlet of the compressor (point I).

c) Calculate the amount of work required for each kilogram of methane that passes through the compressor.

d) Calculate the amount of compressor work required for each kilogram of LNG produced.

e) Calculate

i) the heat removal after the first and second stages of the compressor,
ii) the heat removed in the cooler, and
iii) the heat exchanged in the heat exchanger.

Express all values in kJ/kg of methane that passes through the compressor.

Data: The thermodynamic properties of methane are given in the attached diagram.

71_diagram.jpg

   Related Questions in Chemistry

  • Q : Explain Second Order Rate Equations.

    Integration of the second order rate equations also produces convenient expressions for dealing with concentration time results.A reaction is classified as second order if the rate of the reaction is proportional to the square of the concentration of one o

  • Q : Reaction of calcium carbonate Give me

    Give me answer of this question. What is the volume of 0.1NHcl required to react completely with 1.0g of pure calcium carbonate : (Ca= 40, C= 12 and o = 16 ) (a)150cm3 (b)250cm3 (c)200cm3 (d)100cm3

    Q : Mole fraction of benzene Choose the

    Choose the right answer from following. In a solution of 8.7g benzene C6H6 and 46.0 gm toluene ,(C6, H5, CH3) the mole fraction of benzene in this solution is: (a)1/6 (b)1/5 (c)1/2 (d)1/3

  • Q : Problem based on molarity Choose the

    Choose the right answer from following. The molarity of a solution of Na2CO3 having 10.6g/500ml of solution is : (a) 0.2M (b)2M (c)20M (d) 0.02M

  • Q : Relative lowering of vapour pressure

    explain the process of relative lowering of vapour pressure

  • Q : What are isotonic and hypotonic

    The two solutions which are having equivalent osmotic pressure are called isotonic solutions. The isotonic solutions at the same temperature also have same molar concentration. If we have solutions having different osmotic pressures then the solution having different

  • Q : Reason for medications contain hcl What

    What is the reason behind this that some medications contain hcl?

  • Q : Dipole attractions-London dispersion

    Describe how dipole attractions, London dispersion forces and the hydrogen bonding identical?

  • Q : Chemistry brief discription of relative

    brief discription of relative lowering of vapour pressure

  • Q : Influence of temperature Can someone

    Can someone please help me in getting through this problem. With increase of temperature, which of the following changes: (i) Molality (ii) Weight fraction of solute (iii) Fraction of solute present in water (iv) Mole fraction.