--%>

Latent heat of vaporization

Normal butane (C4H10) is stored as a compressed liquid at 90°C and 1400 kPa. In order to use the butane in a low-pressure gas-phase process, it is throttled to 150 kPa and passed through a vaporizer. The butane emerges from the vaporizer as a gas at 70°C and 150 kPa. Using only the data below and any assumptions you believe are reasonable,

i) determine the latent heat of vaporization of normal butane at 70°C,

ii) calculate the heat that must be supplied to the vaporizer per kg of butane passing through it,

iii) determine the temperature and the mass fraction of butane that is vapour at the inlet of the vaporizer.

Data for normal butane:

Antoine's equation:

ln (psat [bar]) = 9.058 - [2154.9/ (T[k]-34.42)]

Heat capacity of the liquid at any constant pressure:

CP[J/kg K] = 1361 + 3.77 T[K]
Density of liquid at 90°C = 158 kg/m3

   Related Questions in Chemistry

  • Q : Molarity of the final mixture Can

    Can someone please help me in getting through this problem. Two solutions of a substance (that is, non electrolyte) are mixed in the given manner 480 ml of 1.5M first solution + 520 ml of 1.2M second solution. Determine the molarity of the final mixture

  • Q : Problem on Molar solution Can someone

    Can someone please help me in getting through this problem. 2.0 molar solution is acquired, when 0.5 mole solute is dissolved in: (i) 250 ml solvent (ii) 250 g solvent (iii) 250 ml solution (iv) 1000 ml solvent

  • Q : Explain the catalyst definition and

    Catalyst is a substance which accelerates the rate of a chemical reaction without undergoing any change in its chemical composition or mass during the reaction. The phenomenon of increasing the rate of a reaction with the help of a catalyst is known as catalysis.

  • Q : Molarity of Nacl solution When 5.85 g

    When 5.85 g of NaCl (having molecular weight 58.5) is dissolved in water and the solution is prepared to 0.5 litres, the molarity of the solution is: (i) 0.2 (ii) 0.4 (iii) 1.0 (iv) 0.1

  • Q : Schrodinger equation with particle in a

    Three dimensional applications of the Schrodinger equation are introduced by the particle-in-a-box problem.So far only a one-dimensional problem has been solved by application of the Schrodinger equation. Now the allowed energies and the probability functi

  • Q : Vapour pressure of the pure hydrocarbons

    Give me answer of this question. A solution has a 1 : 4 mole ratio of pentane to hexane. The vapour pressure of the pure hydrocarbons at 20°C are 440 mmHg for pentane and 120 mmHg for hexane. The mole fraction of pentane in the vapour phase would be: (a) 0.549 (b)

  • Q : Explain gels and its various categories.

    Certain sols have the property of setting to a semi-solid, jelly-like form by enclosing the entire amount of liquid within itself when they are present at high concentrations. This process is called gelation and colloidal systems with jelly-like appearance are known as gels. Some common examples

  • Q : What is Flash Photolysis Reactions.

    An example illustrates the type of mechanism that can be written to explain the development of flash photolysis reactions. Often, as the reactions in the ozone layer of the earth's atmosphere, we are interested in the kinetic behavior of species that are not a

  • Q : How alkyl group reactions takes place?

    Halogenations: ethers react with chlorine and bromine to give substitution products. The extent of halogenations depends upon the conditions of reacti

  • Q : Question based on vapour pressure and

    Benzene and toluene form nearly ideal solutions. At 20°C, the vapour pressure of benzene is 75 torr and that of toluene is 22 torr. The parial vapour pressure of benzene at 20°C for a solution containing 78g of benzene and 46g of toluene in torr is: (a) 50 (b)