--%>

Ions in solution, acids and bases and volumetric analysis

The accuracy of your written English will be taken into account in marking.

1.    (a)   Identify the spectator ions in the following equation                                                   

        Cl2  (aq)  +  2 K+ (aq)  +  2 Br- (aq)  →  Br2 (aq)  +  2 K+ (aq)  +  2 Cl- (aq)

       (b)   Rewrite the equation to give the net ionic reaction.                                                    

Use the solubility guidelines below to help you answer question 2

Cation

Anion

Cl-. Br-, I-

SO42-

CO32-

OH-

NO3-

Na+, K+

S

S

S

S

S

Mg2+

S

S

X

X

S

Ca2+

S

X

X

Sparingly

S

Ba2+

S

X

X

Sparingly

S

Al3+

S

S

-

X

S

Zn2+

S

S

X

X

S

Pb2+

X

X

X

X

S

Ag+

X

Sparingly

X

-

S

                                       S = Soluble, X = insoluble, - = no salt

2.      An unlabelled bottle contained a solution of one of the following:  AgNO3, CaCl2 or Al2(SO4)3.  In order to establish the identity of this solution known samples of AgNO3, CaCl2 and Al2(SO4)3 were reacted separately with Ba(NO3)3 and then with NaCl.  

(a)    Copy the table below and complete it to indicate whether or not a precipitate was obtained in these reactions.  Write the formula of any precipitates produced.                                       

Compound

Ba(NO3)2 result

NaCl result

AgNO3 (aq)

 

 

CaCl2 (aq)

 

 

Al2(SO4)3 (aq)

 

 

(b)    Write (i) a balanced equation and (ii) a net ionic equation for the reactions that occur.  Include state symbols.  Identify the spectator ion(s) in the solutions.                                                 

(c)    What difference (if any) would there be in the reactions if sodium chloride were to be replaced by potassium chloride?                                                                                                      

3.      Magnesium carbonate, magnesium oxide and magnesium hydroxide are all white solids that react with acidic solutions.

(a)    Write a balanced equation and an ionic equation for the reaction that occurs when each substance reacts with a hydrochloric acid solution.  Include state symbols.                                     

(b)    By observing the reactions in part (a) could you distinguish any of the three magnesium substances from the other two?  If so, how?                                                                                          

(c)    If excess HCl (aq) is added, would the clear solution left behind after each reaction is complete contain the same or different ions in each case?  Identify the ions present.                                 

4.    Nitrous acid engages in a proton-transfer reaction with the methanoate ion, HCO2-  :

  HNO2(aq)     +  HCO2-  (aq)    ↔    NO2(aq)    + HCO2H (aq)

(a)    For the forward reaction identify the acid and base.                                                   

(b)    Identify the acid and base for the reverse reaction.                                               

(c)   Identify the conjugate of HNO2.  Is it the conjugate acid or the conjugate base?          

(d)   Identify the other conjugate acid-base pair and classify each species as the acid or the base.                    

5.    Calculate

       (a)   the number of grams of solute in 250 cm3 of 0.175 mol dm-3 KBr;

       (b)   the molar concentration of a solution containing 14.75 g of Ca(NO3)2 in 1.375 dm3;

       (c)   the volume of 1.50 mol dm-3 Na3PO4, in cm3, that contains 2.50 g of solute.

       Express your answer to the correct number of significant figures.                            

6.    A solution of NaCl has a concentration of 0.100 mol dm-3

       (a)   What is the concentration of the NaCl solution in ppm (mg dm-3)?                       

       (b)   What are the concentrations in ppm of the Na+ and Cl- ions?                                   

7.      A solution of 0.204 mol dm-3 sodium hydroxide (NaOH) was used to neutralise 50.0 cm3 phosphoric acid (H3PO4) and 16.4 cm3 of sodium hydroxide solution was required to reach the end-point.               

(a)   Write a balanced equation for the reaction involved.                                                   

       (b)   Calculate the number of moles of sodium hydroxide used in the titration.                

(c)   Calculate the number of moles of sodium phosphate formed in the titration.         

       (d)   Calculate the concentration of the phosphoric acid solution?                                  

8.    (a)   In order to standardise a solution of sodium hydroxide, a chemist first prepared a solution of ethanedioic acid-2-water, HOOC-COOH·2H2O, by dissolving 14.6 g of ethanedioic acid-2-water in water and making the solution up to 250 cm3 in a graduated flask.  He then pipetted 25.0 cm3 of this solution into a conical flask, added phenolphthalein solution as indicator, and titrated it against the sodium hydroxide solution: 24.1 cm3 of the latter were required.

(i)    Draw a display structure for ethanedioic acid                                                 

(ii)   Hence write a balanced equation for the reaction between the acid (HOOC-COOH) and sodium hydroxide (NaOH).  

(iii)  Calculate the number of moles of the acid, HOOC-COOH·2H2O in 25.0 cm3   

(iv)  Calculate the concentration of the sodium hydroxide solution.                      

(b)   The chemist then used the standardised sodium hydroxide to estimate the concentration of sulphuric acid from a car battery.  He found that 2.00 cm3 of battery acid were neutralised by 20.7 cm3 of the sodium hydroxide solution. Calculate the concentration of sulphuric acid in the battery acid, first in mol per dm3 and then in grams per dm3.                                                                                                

(c)   Why does the student have to calculate the concentration of the sodium hydroxide using this titration method rather than just weighing out a given amount and dissolving it in a known volume of water?                                      

 

                                                                                                                     

 

 

   Related Questions in Chemistry

  • Q : Thermodynamics 1 Lab Report I already

    I already did Materials and Methods section. I uploaded it with the instructions. Also, make sure to see Concept Questions and Thinking Ahead in the instructions that I uploaded. deadline is tomorow at 8 am

  • Q : Question on Mole fraction Mole fraction

    Mole fraction of any solution is equavalent to: (a) No. of moles of solute/ volume of solution in litter (b) no. of gram equivalent of solute/volume of solution in litters (c) no. of  moles of solute/ Mass of solvent in kg (d) no. of moles of any

  • Q : Normality of acetic acid Give me answer

    Give me answer of this question. The normality of 10% (weight/volume) acetic acid is: (a)1 N (b)10 N (c)1.7 N (d) 0.83 N

  • Q : Molarity based question Help me to

    Help me to solve this problem. 4.0 gm of NaOH are contained in one decilitre of solution. Its molarity would be: (a) 4 M (b)2 M (c)1 M (d)1.5 M

  • Q : Problem related to molarity Provide

    Provide solution of this question. Increasing the temperature of an aqueous solution will cause: (a) Decrease in molality (b) Decrease in molarity (c) Decrease in mole fraction (d) Decrease in % w/w

  • Q : What do you mean by the term alum What

    What do you mean by the term alum? Also illustrate its uses?

  • Q : Basicity order order of decreasing

    order of decreasing basicity of urea and its substituents

  • Q : Number of mlecules in methane Can

    Can someone please help me in getting through this problem. The total number of molecules in 16 gm of methane will be: (i) 3.1 x 1023 (ii) 6.02 x 1023 (iii) 16/6.02 x 1023 (iv) 16/3.0 x 1023

  • Q : What do you mean by the term dipole

    What do you mean by the term dipole moment? Briefly describe it.

  • Q : Raoults law Give me answer of this

    Give me answer of this question. Provide solution of this question. Which one of the following is the expression of Raoult's law: (a) P-P1/P = n/n+N (b) P1-P/P = N/ N+n (c)P-P2/P1= N/ N-n (d) P1-P/P2= N-n/N