--%>

Ionization Potential

Second ionization potential of Li, Be and B is in the order (a)Li>Be>B (b)Li>B>Be (c)Be>Li>B (d)B>Be>Li

   Related Questions in Chemistry

  • Q : Acid Solutions Choose the right answer

    Choose the right answer from following. Volume of water needed to mix with 10 ml 10N NHO3 to get 0.1 N HNO3: (a) 1000 ml (b) 990 ml (c) 1010 ml (d) 10 ml

  • Q : Chemists have not created a periodic

    Explain the reason behind that the chemists have not created a periodic table of compounds?

  • Q : Ionization Potential Second ionization

    Second ionization potential of Li, Be and B is in the order (a)Li>Be>B (b)Li>B>Be (c)Be>Li>B (d)B>Be>Li

  • Q : What do you mean by the term alum What

    What do you mean by the term alum? Also illustrate its uses?

  • Q : Why aryl halides are less reactive?

    Aryl halides are much less reactive towards nucleophilic substitution reactions than haloalkanes. The less reactivity of aryl halides can be described

  • Q : Explain Polyatomic Vibrational Spectra

    Polyatomic molecules vibrate in a number of ways, and some of these vibrations can be studied by infrared absorption spectroscopy and some by Raman spectroscopy. The characters of transformation matrices for all 3n translation rotation vibration motio

  • Q : State octet rule in chemistry Explain

    Explain what is octet rule in chemistry?

  • Q : P block bif3 is ionic while other

    bif3 is ionic while other trihalides are covalent in nature

  • Q : Relationship between Pressure and

    The pressure-temperature relation for solid-vapor or liquid vapor equilibrium is expressed by the Clausis-Clapeyron equation.We now obtain an expression for the pressure-temperature dependence of the state of equilibrium between two phases. To be specific,

  • Q : Define Bond Energies - Bond Charges

    Energy changes in some chemical reactions can be used to deduce the energies of chemical bonds. Our understanding of the molecular basis of thermodynamic properties is extended when we ask why the enthalpy change for a reaction is what it is. We deduce,