--%>

Ionization Potential

Second ionization potential of Li, Be and B is in the order (a)Li>Be>B (b)Li>B>Be (c)Be>Li>B (d)B>Be>Li

   Related Questions in Chemistry

  • Q : Concentration factor affected by

    Can someone please help me in getting through this problem. Which of the given concentration factor is affected by the change in temperature: (1) Molarity (2) Molality (3) Mole fraction (4) Weight fraction

  • Q : What are different mechanisms for

    Nucleophilic substitution reactions in halides containing  - X bond may take place through either of the two different mechanisms,S<

  • Q : What do you mean by the term Organic

    What do you mean by the term Organic Chemistry? Briefly define the term?

  • Q : Quantum Mechanical Operators The

    The quantum mechanical methods, illustrated previously by the Schrödinger equation, are extended by the use of operators. Or, w

  • Q : Units of Measurement Unit of

    Unit of measurement- These are also some systems for units:      (1) C.G.S.

  • Q : Tetrahedral holes In zinc blende

    In zinc blende structure, zinc atom fill up:(a) All octahedral holes  (b) All tetrahedral holes  (c) Half number of octahedral holes  (d) Half number of tetrahedral holesAnswer: (d) In zinc blende (ZnS

  • Q : Alkaline medium The amount of KMnO 4

    The amount of KMnO4 required to prepare 100 ml of 0.1N solution in alkaline medium is: (a) 1.58 gm (b) 3.16 gm (c) 0.52 gm (d) 0.31 gmAnswer: (a) In alkaline medium KMnO4 act as ox

  • Q : Law of vapour pressure Select the right

    Select the right answer of the question. "The relative lowering of the vapour pressure is equal to the mole fraction of the solute." This law is called: (a) Henry's law (b) Raoult's law (c) Ostwald's law (d) Arrhenius's law

  • Q : Determining mole fraction of water in

    A mixture has 18 g water and 414 g ethanol. What is the mole fraction of water in mixture (suppose ideal behaviour of mixture): (i) 0.1  (ii) 0.4  (iii) 0.7  (iv) 0.9 Choose the right answer from abo

  • Q : Problem on relative volatility In

    In vapor-liquid equilibrium the relative volatility αij is defined to be the ratio of the separation or K factor for species i to that for species j, that is,  αij = Ki/Kj