Infrared Adsorption

The adsorption of infrared radiation by diatomic molecules increases the vibrational energy fo molecules and gives information about the force constant for the "spring" of the molecule.;

The molecular motion that has the next larger energy level spacing after the rotation fo molecules is the vibration of the atoms of the molecules with respect to each other.

The allowed energies for a single particle of mass m vibrating against a spring with force constant k, that is, experiencing a potential energy U = ½ kx2, where x is the displacement from equilibrium.

εvib = (v + ½ ) h/2∏ √k/m = (v + ½ )hvvib       v = 0, 1, 2 ...

Where v vib, the frequency fo the classical oscillator, represents the term [1/ (2∏)]√k/m. this quantum mechanical result indicates a pattern of energy levels with a constant spacing [h/ (2∏)]√k/m. it is this result that was used for the calculation of the average vibrational energy per degree of freedom.

Classical analysis: now let us investigate the details of the vibrational motion of the atoms of a molecule. The simplest case of a diatomic molecule is our initial concern.

The harmonic oscillator treatment results when we assume that the potential energy of the bond can be described by the function

U = ½ k (r - re)2, where r is the distance between the nuclei of the bonded atoms and re is the value of r at the equilibrium internuclear distance. The constant enters as a proportionality constant, the force constant. It is a measure of the bond.

The classical solution for a vibrating two particle diatomic molecule system can be obtained from Newton's f = ma relation. If the bond is distorted from its equilibrium length re to a new length r, the restoring forces on each atom are - k (r - re). These forces can be equated to the ma terms for each atom where r1 and r2 are the postions of atoms 1 and 2, respectively, relative to the center of mass of the molecule. These forces can be equated to the ma terms for each atom as:

m1 × d2r1/dt2 = - k (r - re) and m2 × d2r2/dt2 = - k (r -re)

Where,  r1 and r2 are the positions of atoms 1 and 2 respectively, relative to the center of mass of the molecule. The relation that keeps the center of mass fixed is r1m1 = r2m2, and with r = r1+ r2 this gives:

r1 = m2/(m1 + m2) × r and r2 = m1/(m1 + m2) × r

Substitution in either of the ƒ = ma equation gives:

m1m2/(m1 + m2) × d2r/dt2 = - k (r - re)

Since r, is a constant, this can also be written:

m1m2/(m1 + m2) × d2 (r- re)/dt2 = - k (r- re)

The term r - re is the displacement of the bond length from its equilibrium position. If the symbol xis introduced as x = r - re and the reduced mass of μ is inserted for the mass term becomes:

μ × d2x/dt2 = - kx

This expression is identical to the corresponding equation for a single particle, except for the replacement of the mass m by the reduced mass. A derivation like the classical vibrational frequency for a two particle system would give the result,

Vvib = 1/2∏ √k/μ 

   Related Questions in Chemistry

  • Q : Molecular mass from Raoults law Provide

    Provide solution of this question. Determination of correct molecular mass from Raoult's law is applicable to: (a) An electrolyte in solution (b) A non-electrolyte in a dilute solution (c) A non-electrolyte in a concentrated solution (d) An electrolyte in a liquid so

  • Q : Crystals of covalent compounds Crystals

    Crystals of the covalent compounds always contain:(i) Atoms as their structural units  (ii) Molecules as structural units  (iii) Ions held altogether by electrostatic forces (iv) High melting pointsAnswer: (i)

  • Q : Explain the process of coagulation of

    Presence of small concentrations of appropriate electrolyte is necessary to stabilize the colloidal solutions. However, if the electrolytes are present in higher concentration, then the ions of the electrolyte neutralize the charge on the colloidal particles may unite

  • Q : Molarity based question Help me to

    Help me to solve this problem. 4.0 gm of NaOH are contained in one decilitre of solution. Its molarity would be: (a) 4 M (b)2 M (c)1 M (d)1.5 M

  • Q : Organic and inorganic substances living

    living beings are made up of organic and inorganic substances.according to their complexity of their molecules how can ach of these substances be classified?

  • Q : Sugar solution The solution of sugar in

    The solution of sugar in water comprises: (i) Free atoms (ii) Free ions (iii) Free molecules (iv) Free atom and molecules. Choose the right answer from the above.

  • Q : Molecular weight of substance The

    The boiling point of a solution of 0.11 gm of a substance in 15 gm of ether was found to be 0.1oC higher than that of the pure ether. The molecular weight of the substance will be (Kb = 2.16)       (a) 148 &nbs

  • Q : Solution density of water is 1g/mL.The

    density of water is 1g/mL.The concentration of water in mol/litre is

  • Q : Problem on molecular weight of solid

    The vapor pressure of pure benzene at a certain temperature is 200 mm Hg. At the same temperature the vapor pressure of a solution containing 2g of non-volatile non-electrolyte solid in 78g of benzene is 195 mm Hg. What is the molecular weight of solid:

  • Q : P block why BiF3 is ionic whereas other

    why BiF3 is ionic whereas other trihalides are covalent in nature?

©TutorsGlobe All rights reserved 2022-2023.