--%>

Infrared Adsorption

The adsorption of infrared radiation by diatomic molecules increases the vibrational energy fo molecules and gives information about the force constant for the "spring" of the molecule.;

The molecular motion that has the next larger energy level spacing after the rotation fo molecules is the vibration of the atoms of the molecules with respect to each other.

The allowed energies for a single particle of mass m vibrating against a spring with force constant k, that is, experiencing a potential energy U = ½ kx2, where x is the displacement from equilibrium.

εvib = (v + ½ ) h/2∏ √k/m = (v + ½ )hvvib       v = 0, 1, 2 ...

Where v vib, the frequency fo the classical oscillator, represents the term [1/ (2∏)]√k/m. this quantum mechanical result indicates a pattern of energy levels with a constant spacing [h/ (2∏)]√k/m. it is this result that was used for the calculation of the average vibrational energy per degree of freedom.

Classical analysis: now let us investigate the details of the vibrational motion of the atoms of a molecule. The simplest case of a diatomic molecule is our initial concern.

The harmonic oscillator treatment results when we assume that the potential energy of the bond can be described by the function

U = ½ k (r - re)2, where r is the distance between the nuclei of the bonded atoms and re is the value of r at the equilibrium internuclear distance. The constant enters as a proportionality constant, the force constant. It is a measure of the bond.

The classical solution for a vibrating two particle diatomic molecule system can be obtained from Newton's f = ma relation. If the bond is distorted from its equilibrium length re to a new length r, the restoring forces on each atom are - k (r - re). These forces can be equated to the ma terms for each atom where r1 and r2 are the postions of atoms 1 and 2, respectively, relative to the center of mass of the molecule. These forces can be equated to the ma terms for each atom as:

m1 × d2r1/dt2 = - k (r - re) and m2 × d2r2/dt2 = - k (r -re)

Where,  r1 and r2 are the positions of atoms 1 and 2 respectively, relative to the center of mass of the molecule. The relation that keeps the center of mass fixed is r1m1 = r2m2, and with r = r1+ r2 this gives:

r1 = m2/(m1 + m2) × r and r2 = m1/(m1 + m2) × r

Substitution in either of the ƒ = ma equation gives:

m1m2/(m1 + m2) × d2r/dt2 = - k (r - re)

Since r, is a constant, this can also be written:

m1m2/(m1 + m2) × d2 (r- re)/dt2 = - k (r- re)

The term r - re is the displacement of the bond length from its equilibrium position. If the symbol xis introduced as x = r - re and the reduced mass of μ is inserted for the mass term becomes:

μ × d2x/dt2 = - kx

This expression is identical to the corresponding equation for a single particle, except for the replacement of the mass m by the reduced mass. A derivation like the classical vibrational frequency for a two particle system would give the result,

Vvib = 1/2∏ √k/μ 

   Related Questions in Chemistry

  • Q : Describe chemical properties of amines.

    Like ammonia, primary, secondary and tertiary amines have a single pair of electrons on N atom. Hence chemical behavior of amines is similar to ammonia. Amines are basic in nature, and in most of the reactions they act as nucleophiles.      1. Reaction wi

  • Q : How to calculate solutions ionic

    Transference numbers and molar conductors can be used to calculate ionic mobilities. This tables under is giving the transference numbers for positive ions at 25 degree C and the values obtained by extrapolation to infinite dilution:

    Q : Explain Polyatomic Vibrational Spectra

    Polyatomic molecules vibrate in a number of ways, and some of these vibrations can be studied by infrared absorption spectroscopy and some by Raman spectroscopy. The characters of transformation matrices for all 3n translation rotation vibration motio

  • Q : Some basic concepts of chemistry an

    an atom of an element is 10.1 times heavier than the mass of a carbon atom.What is its mass in amu?

  • Q : Molecular weight of substance The

    The boiling point of a solution of 0.11 gm of a substance in 15 gm of ether was found to be 0.1oC higher than that of the pure ether. The molecular weight of the substance will be (Kb = 2.16)       (a) 148 &nbs

  • Q : Vant Hoff factor The Van't Hoff factor

    The Van't Hoff factor of the compound K3Fe(CN)6 is: (a) 1  (b) 2  (c) 3  (d) 4  Answer: (d) K3[Fe(CN)6] → 3K+

  • Q : Question on Raoults law Give me answer

    Give me answer of this question. For a dilute solution, Raoult's law states that: (a) The lowering of vapour pressure is equal to mole fraction of solute (b) The relative lowering of vapour pressure is equal to mole fraction of solute (c) The relative lowering of v

  • Q : Molecular crystals Among the below

    Among the below shown which crystal will be soft and have low melting point: (a) Covalent  (b) Ionic  (c) Metallic  (d) MolecularAnswer: (d) Molecular crystals are soft and have low melting point.

  • Q : Hydrocarbons list and identify

    list and identify differences between the major classes of hydrocarbons

  • Q : Molar mass what is the equation for

    what is the equation for calculating molar mass of non volatile solute