--%>

Hybridization

Atomic orbitals can be combined, in a process called hybridization, to describe the bonding in polyatomic molecules.

Descriptions of the bonding in CH4 can be used to illustrate the valence bond procedure. We must arrive at four bonds projecting from the carbon atom in procedure. We must arrive at four bonds projecting from the carbon atom in tetrahedral directions.

Lithus Pauling pointed out that the 2s and 3p orbitals of the carbon atom could be used to form new orbitals better suited to the description of the bonds. This procedure of combining orbitals to form new ones is called hybridization, and the new sets are called hybrid orbitals. The most suitable set can be found, according to Pauling, by forming wave functions which project out farthest from the central atom. When the four orbitals that they are concentrated along tetrahedral directions. Thus the sp3 hybrid orbitals are tetrahedrally oriented and are suitable for describing the bonding in CH4.

Other combinations of s, p and d orbitals can be constructed to provide orbitals suitable for molecules of other shapes, hybrid orbitals that project in linear, trigonal, tetrahedral and octahedral directions are produced by the combinations. The trigonal and linear hybrids, which leave one p and two p orbitals of the atom unchanged, are the basis for descriptions of double and triple bonds. The p orbitals form bonds and supplement the σ bonds, to notice that σ and bonds are similar to those constructed for homonuclear diatomic molecules.

Hybrid orbitals from symmetry: the hybrid orbitals constructed by Pauling led to the geometry, or symmetry, of the molecule for which they were constructed. If the geometry of the molecule is taken as known, the approximate hybrid orbitals can be deduced from symmetry consideration alone. Consider the four tetrahedrally arranged carbon atom bond orbitals needed in this approach to describe the bonding in methane. For these orbitals the characters for the various symmetry operations of the Td group can be seen by calculating the number of unchanged bond orbitals, or bond lines, for each operation. We obtain:

Td E 8C3 3C2 d 6S4
σorb 4 1 0 2 0

                    
Thus we need atomic orbitals that transform as A1 and T2 to provide the basis for the tetrahedrally directed hybrid orbitals. The totally symmetric s atomic orbital transforms according to A1. In a similar way, the hybrid combinations of table can be deduced from the symmetry of the bonding situation for which they are to be used.

Some Hybridization used in describing σ bonding:

Number of orbitals Shape Atomic-Orbital Combinations
Example
2 Linear sp CH≡CH
3 Trigonal sp2 CH2 1851_Hybridization.png CH2, BF3
4 Tetrahedral sp3 or sd3 CH4, MnO4-
  Square planner dsp2 PtCl24-, Ni(CN)24-
5 Trigonal bipyramid dsp3 PCl5, Fe (CO)5
6 Octahedron d2sp3 PtF6, CoF26-

   Related Questions in Chemistry

  • Q : Number of moles of potassium chloride

    Choose the right answer from following. The number of moles of KCL in 1000ml of 3 molar solution is: (a)1 (b)2 (c)3 (d)1.5

  • Q : Molarity of HCl solution 20 ml of HCL

    20 ml of HCL solution needs 19.85 ml of 0.01M NaOH solution for complete neutralization. Morality of the HCL solution is:  (i) 0.0099 (ii) 0.099 (iii) 0.99 (iv) 9.9 Choose the right answer from above.

  • Q : Surface Tension Vapour Pressure The

    The vapor pressure of small liquid drops depends on the drop size. Although the surface properties of a liquid are different from those of the bulk liquid, the special surface properties can be ignored except in a few situations. One is the case in which a liquid is dispersed into fine dr

  • Q : What are diazonium salts? The diazonium

    The diazonium salts are represented by the general formula ArN2 +X where X- ion may be anion such as (Cl) ¨, B ¨r, HSO

  • Q : What are Ethers and its types? Ethers

    Ethers are the compounds with general formula or CnH2n+

  • Q : Explanation of oxygen family. Group 16

    Group 16 of periodic

  • Q : Molarity what is the molarity of the

    what is the molarity of the solution prepared by dissolving 75.5 g of pure KOH in 540 ml of solution

  • Q : Strength of Nacl in solution To 5.85gm

    To 5.85gm of Nacl one kg of water is added to prepare of solution. What is the strength of Nacl in this solution (mol. wt. of nacl = 58.5)? (a) 0.1 Normal (b) 0.1 Molal (c) 0.1 Molar (d) 0.1 FormalAnswer:

  • Q : What is Ideal Mixtures Ideal mixing

    Ideal mixing properties can be recognized in the formation of an ideal gas mixture from ideal gases. Consider the formation of a mixture of gases i.e. a gaseous solution, from two mixtures of pure gases. A useful characterization of an ideal mixture, or soluti

  • Q : Problem on Neutralization What weight

    What weight of hydrated oxalic acid should be added for complete neutralisation of 100 ml of 0.2N - NaOH solution? (a) 0.45 g  (b)0.90 g  (c) 1.08 g  (d) 1.26 g      Answer